Advertisements
Advertisements
Question
Find the value of:
`("log"sqrt(8))/(8)`
Solution
`("log"sqrt(8))/(8)`
= `("log"2sqrt(2))/(8)`
= `(1)/(8)("log"2 + "log"sqrt(2))`
= `(1)/(8)("log"2 + "log"2^(1/2))`
= `(1)/(8)"log"2 + (1)/(8)"log"2^(1/2)`
= `(1)/(8)"log"2 + (1)/(2)(1)/(8)"log"2`
= `(1)/(8)"log"2 + (1)/(16)"log"2`
= `(2)/(16)"log"2 + (1)/(16)"log"2`
= `(3)/(16)"log"2`.
APPEARS IN
RELATED QUESTIONS
If 3( log 5 - log 3 ) - ( log 5 - 2 log 6 ) = 2 - log x, find x.
If log10 8 = 0.90; find the value of : log√32
If log10 a = b, find 103b - 2 in terms of a.
Given: log3 m = x and log3 n = y.
Express 32x - 3 in terms of m.
Express the following in terms of log 5 and/or log 2: log20
Express the following in terms of log 2 and log 3: `"log"(225)/(16) - 2"log"(5)/(9) + "log"(2/3)^5`
Express the following as a single logarithm:
`2 "log" 3 - (1)/(2) "log" 16 + "log" 12`
If x2 + y2 = 6xy, prove that `"log"((x - y)/2) = (1)/(2)` (log x + log y)
Simplify: log a2 + log a-1
Simplify: log b ÷ log b2