Advertisements
Advertisements
प्रश्न
Find the value of:
`("log"sqrt(8))/(8)`
उत्तर
`("log"sqrt(8))/(8)`
= `("log"2sqrt(2))/(8)`
= `(1)/(8)("log"2 + "log"sqrt(2))`
= `(1)/(8)("log"2 + "log"2^(1/2))`
= `(1)/(8)"log"2 + (1)/(8)"log"2^(1/2)`
= `(1)/(8)"log"2 + (1)/(2)(1)/(8)"log"2`
= `(1)/(8)"log"2 + (1)/(16)"log"2`
= `(2)/(16)"log"2 + (1)/(16)"log"2`
= `(3)/(16)"log"2`.
APPEARS IN
संबंधित प्रश्न
Express the following in terms of log 2 and log 3: log128
Express the following in terms of log 5 and/or log 2: log500
Express the following as a single logarithm:
log 18 + log 25 - log 30
Express the following as a single logarithm:
`2 + 1/2 "log" 9 - 2 "log" 5`
Express the following as a single logarithm:
`(1)/(2)"log"25 - 2"log"3 + "log"36`
Simplify the following:
`2"log" 7 + 3 "log" 5 - "log"(49)/(8)`
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: log 12
If log x = A + B and log y = A-B, express the value of `"log" x^2/(10y)` in terms of A and B.
If log 27 = 1.431, find the value of the following: log300
Find the value of:
`("log"sqrt125 - "log"sqrt(27) - "log"sqrt(8))/("log"6 - "log"5)`