Advertisements
Advertisements
Question
Find the value of:
`("log"sqrt(27) + "log"8 + "log"sqrt(1000))/("log"120)`
Solution
`("log"sqrt(27) + "log"8 + "log"sqrt(1000))/("log"120)`
= `("log"(27)^(1/2) + "log"2^3 + "log"1000^(1/2))/("log"(3 xx 2^2 xx 10)`
= `("log"(3)^(3xx1/2) + "log"2^3 + "log"(10)^(3xx1/2))/("log"3 + "log2^2 + "log 10)`
= `(3/2"log"3 + 3"log"2 + 3/2"log"(10))/("log"3 + 2 "log"2 + "log"10)`
= `(3/2"log"3 + 3/2(2"log"2) + 3/2(1))/("log"3 + 2"log2 + 1)`
= `(3/2["log" 3 + 2"log" 2 + 1])/("log"3 + 2"log2 + 1)`
= `(3)/(2)`.
APPEARS IN
RELATED QUESTIONS
If log10 8 = 0.90; find the value of : log 0.125
If log 27 = 1.431, find the value of : log 9
If log5 x = y, find 52y+ 3 in terms of x.
Write the logarithmic equation for:
n = `sqrt(("M"."g")/("m".l)`
Express the following as a single logarithm:
`3"log"(5)/(8) + 2"log"(8)/(15) - (1)/(2)"log"(25)/(81) + 3`
If log1025 = x and log1027 = y; evaluate without using logarithmic tables, in terms of x and y: log105
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: `"log" sqrt(72)`
If log 2 = x and log 3 = y, find the value of each of the following on terms of x and y: log60
If log 4 = 0.6020, find the value of each of the following: log2.5
If x2 + y2 = 7xy, prove that `"log"((x - y)/3) = (1)/(2)` (log x + log y)