Advertisements
Advertisements
Question
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: `"log" sqrt(72)`
Solution
`"log" sqrt(72)`
= `"log"(72)^(1/2)`
= `(1)/(2)"log"72`
= `(1)/(2)"log"(2^3 xx 3^2)`
= `(1)/(2)"log"2^3 + (1)/(2)"log"3^2`
= `(3)/(2)"log"2 + (2)/(2)"log"3`
= `(3)/(2)"log"2 + "log"3`
= `(3/2 xx 0.3010) + 0.4771`
= 0.9286.
APPEARS IN
RELATED QUESTIONS
Given 3log x + `1/2`log y = 2, express y in term of x.
If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b': log 2.25
If log 2 = 0.3010 and log 3 = 0.4771; find the value of : log 15
If log10 8 = 0.90; find the value of : log√32
Express the following in terms of log 2 and log 3: log 36
Express the following in terms of log 5 and/or log 2: log20
Write the logarithmic equation for:
n = `sqrt(("M"."g")/("m".l)`
Simplify the following:
`3"log" (32)/(27) + 5 "log"(125)/(24) - 3"log" (625)/(243) + "log" (2)/(75)`
If log a = p and log b = q, express `"a"^3/"b"^2` in terms of p and q.
If 2 log x + 1 = 40, find: x