Advertisements
Advertisements
प्रश्न
If log 2 = 0.3010 and log 3 = 0.4771; find the value of:
`2/3` log 8
उत्तर
We know that log 2 = 0.3010 and log 3 = 0.4771
`2/3`log 8
= `2/3` log 2 × 2 × 2
= `2/3` log23
= 3 × `2/3` log2 ...[logamn = nlogam]
= 2 log2
= 2 × 0.3010 ...[∵ log2 = 0.3010]
= 0.6020
APPEARS IN
संबंधित प्रश्न
Express in terms of log 2 and log 3 : log 36
Evaluate the following without using tables :
log 5 + log 8 - 2 log 2
Evaluate the following without using tables :
log108 + log1025 + 2 log103 - log1018
Solve for x : log (x - 2) + log (x + 2) = log 5
Solve for x : log (x + 5) + log (x - 5) = 4 log 2 + 2 log 3
Solve for x : `(log 81)/(log27 )` = x
If log 2 = 0.3010 and log 3 = 0.4771; find the value of : log 3.6
If log 2 = 0.3010 and log 3 = 0.4771; find the value of : log 25
State, true or false :
If `log 25/log 5 = log x`, then x = 2.
Given that log x = m + n and log y = m - n, express the value of log ` ( 10x ) / ( y ^ 2 )` in terms of m and n.