Advertisements
Advertisements
प्रश्न
Given that log x = m + n and log y = m - n, express the value of log ` ( 10x ) / ( y ^ 2 )` in terms of m and n.
उत्तर
Given that
log x = m + n ;
log y = m - n ;
Consider the expression log ` ( 10x )/( y^2 ) ` :
log ` ( 10x ) / ( y^2 ) `
= log 10 x - log y2
⇒ log 10 x - 2 log y ... [ n loga m = loga mn]
⇒ log 10 + log x - 2 log y ...[ loga m + loga n = loga mn ]
⇒ 1 + log x - 2 log y
⇒ 1 + m + n - 2 ( m - n )
⇒ 1 + m + n - 2m + 2n
⇒ log ` ( 10x )/( y^2 )` = 1 - m + 3n.
APPEARS IN
संबंधित प्रश्न
Express in terms of log 2 and log 3 :
`"log"26/51 - "log"91/119`
Express the following in a form free from logarithm:
2 log x - log y = 1
Evaluate the following without using tables :
log108 + log1025 + 2 log103 - log1018
Prove that : `2"log" 15/18 - "log"25/162 + "log"4/9 = log 2 `
Find x, if : x - log 48 + 3 log 2 = `1/3`log 125 - log 3.
Express log102 + 1 in the form of log10x .
Solve for x : log (x + 5) + log (x - 5) = 4 log 2 + 2 log 3
Solve for x : `(log 81)/(log27 )` = x
If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b': log `2 1/4`
If log102 = a and log103 = b; express each of the following in terms of 'a' and 'b' : log 60