Advertisements
Advertisements
प्रश्न
Find x, if : x - log 48 + 3 log 2 = `1/3`log 125 - log 3.
उत्तर
Consider the given equation
x - log 48 + 3log2 = `1/3`log 125 - log 3
⇒ x = `1/3`log125 - log 3 + log 48 - 3 log 2
⇒ x = `"log"( 125 )^(1/3) - log 3 + log 48 - log 2^3 ....[ nlog_am = log_am^n ]`
⇒ x = `log( 5 xx 5 xx 5 )^(1/3) - log 3 + log 48 - log 8`
⇒ x = `log( 5^3 )^(1/3) - log 3 + log 48 - log 8`
⇒ x = log 5 - log 3 + log 48 - log 8
⇒ x = log 5 + log 48 - log 3 - log 8
⇒ x = ( log 5 + log 48 ) - ( log 3 + log 8 )
⇒ x = ( log 5 x 48 ) - ( log 3 x 8 ) ....[ logam + logan = logamn ]
⇒ x = log`[ 5 xx 48 ]/[ 3 xx 8 ] .....[ log_am - log_an = log_a(m/n) ]`
⇒ x = `"log"[ 5 xx 6 xx 8 ]/[ 3 xx 8 ]`
⇒ x = log 10
⇒ x = 1.
APPEARS IN
संबंधित प्रश्न
Express in terms of log 2 and log 3:
log 144
Express in terms of log 2 and log 3 :
`"log"26/51 - "log"91/119`
Express the following in a form free from logarithm:
2 log x - log y = 1
Express the following in a form free from logarithm:
2 log x + 3 log y = log a
Express log102 + 1 in the form of log10x .
Solve for x : log10 (x - 10) = 1
If log 2 = 0.3010 and log 3 = 0.4771; find the value of:
`2/3` log 8
Solve for x : ` (log 64)/(log 8)` = log x
State, true or false :
If `log 25/log 5 = log x`, then x = 2.
Given that log x = m + n and log y = m - n, express the value of log ` ( 10x ) / ( y ^ 2 )` in terms of m and n.