Advertisements
Advertisements
प्रश्न
Find x, if : x - log 48 + 3 log 2 = `1/3`log 125 - log 3.
उत्तर
Consider the given equation
x - log 48 + 3log2 = `1/3`log 125 - log 3
⇒ x = `1/3`log125 - log 3 + log 48 - 3 log 2
⇒ x = `"log"( 125 )^(1/3) - log 3 + log 48 - log 2^3 ....[ nlog_am = log_am^n ]`
⇒ x = `log( 5 xx 5 xx 5 )^(1/3) - log 3 + log 48 - log 8`
⇒ x = `log( 5^3 )^(1/3) - log 3 + log 48 - log 8`
⇒ x = log 5 - log 3 + log 48 - log 8
⇒ x = log 5 + log 48 - log 3 - log 8
⇒ x = ( log 5 + log 48 ) - ( log 3 + log 8 )
⇒ x = ( log 5 x 48 ) - ( log 3 x 8 ) ....[ logam + logan = logamn ]
⇒ x = log`[ 5 xx 48 ]/[ 3 xx 8 ] .....[ log_am - log_an = log_a(m/n) ]`
⇒ x = `"log"[ 5 xx 6 xx 8 ]/[ 3 xx 8 ]`
⇒ x = log 10
⇒ x = 1.
APPEARS IN
संबंधित प्रश्न
Express the following in a form free from logarithm:
2 log x + 3 log y = log a
Evaluate the following without using tables :
log 5 + log 8 - 2 log 2
Evaluate the following without using tables :
log108 + log1025 + 2 log103 - log1018
Solve for x : `(log 81)/(log27 )` = x
If log 2 = 0.3010 and log 3 = 0.4771; find the value of : log 25
Solve for x : ` ( log 128) / ( log 32 ) ` = x
If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b' : log 5.4
State, true or false : log 1 x log 1000 = 0
State, true or false :
`log x/log y` = log x - log y
State, true or false :
If `log 25/log 5 = log x`, then x = 2.