Advertisements
Advertisements
Question
Given that log x = m + n and log y = m - n, express the value of log ` ( 10x ) / ( y ^ 2 )` in terms of m and n.
Solution
Given that
log x = m + n ;
log y = m - n ;
Consider the expression log ` ( 10x )/( y^2 ) ` :
log ` ( 10x ) / ( y^2 ) `
= log 10 x - log y2
⇒ log 10 x - 2 log y ... [ n loga m = loga mn]
⇒ log 10 + log x - 2 log y ...[ loga m + loga n = loga mn ]
⇒ 1 + log x - 2 log y
⇒ 1 + m + n - 2 ( m - n )
⇒ 1 + m + n - 2m + 2n
⇒ log ` ( 10x )/( y^2 )` = 1 - m + 3n.
APPEARS IN
RELATED QUESTIONS
Express in terms of log 2 and log 3:
log 144
Express in terms of log 2 and log 3 : log 4.5
Evaluate the following without using tables :
log108 + log1025 + 2 log103 - log1018
Prove that : `2"log" 15/18 - "log"25/162 + "log"4/9 = log 2 `
Solve for x : log (x2 - 21) = 2.
If log 2 = 0.3010 and log 3 = 0.4771; find the value of:
`2/3` log 8
State, true or false :
`log x/log y` = log x - log y
State, true or false :
If `log 25/log 5 = log x`, then x = 2.
State, true or false :
log x x log y = log x + log y
If log10 8 = 0.90; find the value of : log10 4