Advertisements
Advertisements
प्रश्न
Solve for x : log (x + 5) + log (x - 5) = 4 log 2 + 2 log 3
उत्तर
log ( x + 5 ) + log ( x - 5 ) = 4log2 + 2log3
⇒ log ( x + 5 ) ( x - 5 ) = 4log 2 + 2log3 ...[ logam + loga n + loga mn]
⇒ log ( x2 - 25 ) = log24 + log32 ... [ n loga m = loga mn ]
⇒ log ( x2 - 25 ) = log 16 + log9
⇒ log ( x2 - 25 )= log 16 x 9 ...[ loga m + loga n + loga mn]
⇒ log ( x2 - 25 ) = log 144
⇒ x2 - 25 = 144
⇒ x2 = 144 + 25
⇒ x2 = 169
⇒ x = `+-sqrt169`
⇒ x =`+-sqrt(13^2)`
⇒ x =`+-` 13
APPEARS IN
संबंधित प्रश्न
Express in terms of log 2 and log 3 : log 36
Express in terms of log 2 and log 3 : log 4.5
Express the following in a form free from logarithm:
2 log x + 3 log y = log a
Express the following in a form free from logarithm:
a log x - b log y = 2 log 3
Evaluate the following without using tables :
log 5 + log 8 - 2 log 2
Find x, if : x - log 48 + 3 log 2 = `1/3`log 125 - log 3.
Express log102 + 1 in the form of log10x .
Solve for x : log (x2 - 21) = 2.
Solve for x : ` ( log 128) / ( log 32 ) ` = x
State, true or false :
`log x/log y` = log x - log y