Advertisements
Advertisements
Question
Solve for x : log (x + 5) + log (x - 5) = 4 log 2 + 2 log 3
Solution
log ( x + 5 ) + log ( x - 5 ) = 4log2 + 2log3
⇒ log ( x + 5 ) ( x - 5 ) = 4log 2 + 2log3 ...[ logam + loga n + loga mn]
⇒ log ( x2 - 25 ) = log24 + log32 ... [ n loga m = loga mn ]
⇒ log ( x2 - 25 ) = log 16 + log9
⇒ log ( x2 - 25 )= log 16 x 9 ...[ loga m + loga n + loga mn]
⇒ log ( x2 - 25 ) = log 144
⇒ x2 - 25 = 144
⇒ x2 = 144 + 25
⇒ x2 = 169
⇒ x = `+-sqrt169`
⇒ x =`+-sqrt(13^2)`
⇒ x =`+-` 13
APPEARS IN
RELATED QUESTIONS
Express in terms of log 2 and log 3:
log 144
Express in terms of log 2 and log 3 : log 4.5
Evaluate the following without using tables :
log108 + log1025 + 2 log103 - log1018
Evaluate the following without using tables :
log 4 + `1/3` log 125 - `1/5`log 32
Prove that : `2"log" 15/18 - "log"25/162 + "log"4/9 = log 2 `
Express log102 + 1 in the form of log10x .
Solve for x : log (x - 2) + log (x + 2) = log 5
If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b': log 12
State, true or false :
`log x/log y` = log x - log y
State, true or false :
If `log 25/log 5 = log x`, then x = 2.