Advertisements
Advertisements
प्रश्न
Solve for x : `(log 81)/(log27 )` = x
उत्तर
`(log 81)/(log27 )` = x
⇒ x = `(log81)/(log27)`
⇒ x = `(log3 xx 3 xx 3 xx 3)/( log3 xx 3 xx 3)`
⇒ x = `(log3^4)/(log3^3)`
⇒ x = `(4log3)/(3log3)` ... [ n logam = logamn ]
⇒ x= `(4)/(3)`
⇒ x = 1 `(1)/(3)`
APPEARS IN
संबंधित प्रश्न
Express in terms of log 2 and log 3 : log 36
Evaluate the following without using tables :
log108 + log1025 + 2 log103 - log1018
Prove that : `2"log" 15/18 - "log"25/162 + "log"4/9 = log 2 `
Express log102 + 1 in the form of log10x .
Solve for x : log10 (x - 10) = 1
Solve for x : log (x + 5) + log (x - 5) = 4 log 2 + 2 log 3
Solve for x :
`log 225/log15` = log x
If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b' : log 5.4
State, true or false : log 1 x log 1000 = 0
Given that log x = m + n and log y = m - n, express the value of log ` ( 10x ) / ( y ^ 2 )` in terms of m and n.