Advertisements
Advertisements
प्रश्न
If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b' : log 5.4
उत्तर
Given that log102 = a and log103 = b
log 5.4
= log`54/10`
= log`( 2 xx 3 xx 3 xx 3)/10`
= log( 2 x 3 x 3 x 3 ) - log1010 ...[ logam = logan = loga`(m/n)` ]
= log102 + log1033 - log1010 ...[logamn = logam + logan]
= log102 + 3log103 - log1010 ...[ nlogam = logamn ]
= log102 + 3log103 - 1 ...[ ∵ log1010 = 1]
= a + 3b - 1 ...[ ∵ log102 = a and log103 = b ]
APPEARS IN
संबंधित प्रश्न
Express in terms of log 2 and log 3 :
`"log"26/51 - "log"91/119`
Express the following in a form free from logarithm:
2 log x - log y = 1
Evaluate the following without using tables :
log108 + log1025 + 2 log103 - log1018
Find x, if : x - log 48 + 3 log 2 = `1/3`log 125 - log 3.
Solve for x : log10 (x - 10) = 1
Solve for x : `(log 81)/(log27 )` = x
Solve for x : ` ( log 128) / ( log 32 ) ` = x
If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b': log `2 1/4`
State, true or false : log 1 x log 1000 = 0
State, true or false :
log x x log y = log x + log y