Advertisements
Advertisements
प्रश्न
Solve for x : ` ( log 128) / ( log 32 ) ` = x
उत्तर
` ( log 128 ) / ( log 32 ) ` = x
`=> x =( log 128 )/ ( log 32 )`
`=> x= (log 2xx 2xx 2xx 2xx 2xx 2xx 2)/ (log 2xx 2xx 2xx 2xx 2 ) `
`=> x = log 2^7 / log2^5`
`=> x = ( 7 log 2 )/ ( 5 log 2 ) ` ... [ n loga m = loga mn ]
` => x = ( 7 ) / ( 5 )`
⇒ x = 1.4
APPEARS IN
संबंधित प्रश्न
Express in terms of log 2 and log 3 : log 36
Express the following in a form free from logarithm:
2 log x - log y = 1
Find x, if : x - log 48 + 3 log 2 = `1/3`log 125 - log 3.
Express log102 + 1 in the form of log10x .
If log 2 = 0.3010 and log 3 = 0.4771; find the value of : log 3.6
Solve for x :
`log 225/log15` = log x
If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b' : log 5.4
Solve for x : ` (log 64)/(log 8)` = log x
State, true or false :
If `log 25/log 5 = log x`, then x = 2.
If log10 8 = 0.90; find the value of : log10 4