Advertisements
Advertisements
प्रश्न
If log 2 = 0.3010 and log 3 = 0.4771; find the value of : log 3.6
उत्तर
We know that log 2 = 0.3010 and log 3 = 0.4771.
log 3.6
= log`36/10`
= log 36 - log 10 ...`[ log_a (m/n) = log_a m - log_a n ]`
= log 2 x 2 x 3 x 3 - 1 ...[ ∵ log 10 = 1 ]
= log 2 x 2 + log 3 x 3 - 1 ...`[ log_a mn = log_a m + log_a n ]`
= log 22 + log 32 - 1 ]
= 2log2 + 2log3 - 1 ...`[ nlog_a m = log_a m^n ]`
= 2(0.3010) + 2(0.4771) - 1
= 1.5562 - 1 ...`[ ∵ log2 = 0.3010 and log 3 = 0.4771 ]`
= 0.5562
APPEARS IN
संबंधित प्रश्न
Express in terms of log 2 and log 3 : log 36
Express the following in a form free from logarithm:
2 log x - log y = 1
Express the following in a form free from logarithm:
a log x - b log y = 2 log 3
Evaluate the following without using tables :
log 5 + log 8 - 2 log 2
Evaluate the following without using tables :
log108 + log1025 + 2 log103 - log1018
Solve for x : log (x + 5) + log (x - 5) = 4 log 2 + 2 log 3
Solve for x : ` ( log 128) / ( log 32 ) ` = x
Solve for x : ` (log 64)/(log 8)` = log x
State, true or false : log 1 x log 1000 = 0
State, true or false :
`log x/log y` = log x - log y