हिंदी

If P, Q, R are physical quantities, having different dimensions, which of the following combinations can never be a meaningful quantity? (P – Q)/R PQ – R PQ/R (PR – Q2)/R (R + Q)/P - Physics

Advertisements
Advertisements

प्रश्न

If P, Q, R are physical quantities, having different dimensions, which of the following combinations can never be a meaningful quantity?

  1. (P – Q)/R
  2. PQ – R
  3. PQ/R
  4. (PR – Q2)/R
  5. (R + Q)/P
टिप्पणी लिखिए

उत्तर

a. (P – Q)/R

e. (R + Q)/P

Explanation:

Principle of Homogeneity of dimensions: It states that in a correct equation, the dimensions of each term added or subtracted must be the same. Every correct equation must have the same dimensions on both sides of the equation.

According to the problem P, Q and R are having different dimensions, since, the sum and difference of physical dimensions, are meaningless, i.e., (P – Q) and (R + Q) are not meaningful.

So in option (b) and (c), PQ may have the same dimensions as those of R and in options (d) PR and Q2 may have the same dimensions as those of R.

Hence, they cannot be added or subtracted, so we can say that (a) and (e) is not meaningful.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Units and Measurements - Exercises [पृष्ठ ७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Physics [English] Class 11
अध्याय 2 Units and Measurements
Exercises | Q 2.14 | पृष्ठ ७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A book with many printing errors contains four different formulas for the displacement y of a particle undergoing a certain periodic motion:

(a) y = a sin `(2pit)/T`

(b) y = a sin vt

(c) y = `(a/T) sin  t/a`

d) y = `(a/sqrt2) (sin 2πt / T + cos 2πt / T )`

(a = maximum displacement of the particle, v = speed of the particle. T = time-period of motion). Rule out the wrong formulas on dimensional grounds.


Explain this common observation clearly : If you look out of the window of a fast moving train, the nearby trees, houses, etc. seem to move rapidly in a direction opposite to the train’s motion, but the distant objects (hill tops, the Moon, the stars etc.) seem to be stationary. (In fact, since you are aware that you are moving, these distant objects seem to move with you).


The dimensional formula for latent heat is ______.


If area (A), velocity (V) and density (p) are taken as fundamental units, what is the dimensional formula for force?


On the basis of dimensions, decide which of the following relations for the displacement of a particle undergoing simple harmonic motion is not correct ______.

  1. y = `a sin  (2πt)/T`
  2. y = `a sin vt`
  3. y = `a/T sin (t/a)`
  4. y = `asqrt(2) (sin  (2pit)/T - cos  (2pit)/T)`

Why length, mass and time are chosen as base quantities in mechanics?


An artificial satellite is revolving around a planet of mass M and radius R, in a circular orbit of radius r. From Kepler’s Third law about the period of a satellite around a common central body, square of the period of revolution T is proportional to the cube of the radius of the orbit r. Show using dimensional analysis, that `T = k/R sqrt(r^3/g)`. where k is a dimensionless constant and g is acceleration due to gravity.


Einstein’s mass-energy relation emerging out of his famous theory of relativity relates mass (m ) to energy (E ) as E = mc2, where c is speed of light in vacuum. At the nuclear level, the magnitudes of energy are very small. The energy at nuclear level is usually measured in MeV, where 1 MeV= 1.6 × 10–13 J; the masses are measured in unified atomic mass unit (u) where 1u = 1.67 × 10–27 kg.

  1. Show that the energy equivalent of 1 u is 931.5 MeV.
  2. A student writes the relation as 1 u = 931.5 MeV. The teacher points out that the relation is dimensionally incorrect. Write the correct relation.

The workdone by a gas molecule in an x' isolated system is given by, W = αβ2 `e^(-x^2/(alpha"KT"))`, where x is the displacement, k is the Boltzmann constant and T is the temperature. α and β are constants. Then the dimensions of β will be ______.


P = `alpha/beta` exp `(-"az"/"K"_"B"theta)`

θ `→` Temperature

P `→` Pressure

K`→` Boltzmann constant

z `→` Distance

Dimension of β is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×