Advertisements
Advertisements
प्रश्न
If p1 and p2 are the lengths of the perpendiculars from the origin to the straight lines x sec θ + y cosec θ = 2a and x cos θ – y sin θ = a cos 2θ, then prove that p12 + p22 = a2
उत्तर
Given P1 is the length of the perpendicular from the origin to the straight line
x sec θ + y cosec θ – 2a = 0
P1 = `(0 * sec theta + 0 * "cosec" theta - 2"a")/sqrt(sec^2theta + "cosec"^2theta)`
P12 = `(4"a"^2)/(sec^2theta + "cosec"^2theta)` .....(1)
Also given P2 is the length of the perpendicular from the origin to the straight line
x cos θ – y sin θ – a cos 2θ = 0
P2 = `(0 * cos theta - 0 sin theta - "a" cos 2theta)/sqrt(cos^2theta + (- sin theta)^2`
P2 = `(- "a" cos 2theta)/sqrt(cos^2theta + sin^2theta)`
= – a cos 2θ
P22 = a2 cos2 2θ ......(2)
P12 + P22 = `(4"a"^2)/(sec^2theta + "cosec"^2theta) + "a"^2cos^2 2theta`
= `(4"a"^2)/(1/(cos^2theta) + 1/(sin^2theta)) + "a"^2(cos^2theta - sin^2theta)`
= `(4"a"^2)/((sin^2theta + cos^2theta)/(cos^2theta * sin^2theta)) + "a"^2(cos^4theta + sin^4theta - 2cos^2theta sin^2theta)`
= 4a2 cos2θ sin2θ + a2cos4θ + a2sin4θ - 2a2cos2θ sin2θ
= a2cos4θ + a2sin4θ + 2a2 cos2θ sin2θ
= a2[cos4θ + sin4θ + 2cos2θ sin2θ]
= a2[cos2θ + sin2θ]2
P12 + P22 = a2
APPEARS IN
संबंधित प्रश्न
Find the distance between the line 4x + 3y + 4 = 0, and a point (−2, 4)
Find the equation of the lines passing through the point of intersection lines 4x − y + 3 = 0 and 5x + 2y + 7 = 0, and perpendicular to x − 2y + 1 = 0
Find the equations of two straight lines which are parallel to the line 12x + 5y + 2 = 0 and at a unit distance from the point (1, −1)
Find the equations of straight lines which are perpendicular to the line 3x + 4y − 6 = 0 and are at a distance of 4 units from (2, 1)
Find the distance between the parallel lines
12x + 5y = 7 and 12x + 5y + 7 = 0
Find the family of straight lines parallel to 3x + 4y – 12
If the line joining two points A(2, 0) and B(3, 1) is rotated about A in anticlockwise direction through an angle of 15°, then find the equation of the line in new position
A line is drawn perpendicular to 5x = y + 7. Find the equation of the line if the area of the triangle formed by this line with co-ordinate axes is 10 sq.units
Find the image of the point (−2, 3) about the line x + 2y − 9 = 0
A photocopy store charges ₹ 1.50 per copy for the first 10 copies and ₹ 1.00 per copy after the 10th copy. Let x be the number of copies, and let y be the total cost of photocopying. Find the cost of making 40 copies
Find all the equations of the straight lines in the family of the lines y = mx − 3, for which m and the x-coordinate of the point of intersection of the lines with x − y = 6 are integers
Choose the correct alternative:
The slope of the line which makes an angle 45° with the line 3x − y = −5 are
Choose the correct alternative:
The equation of the line with slope 2 and the length of the perpendicular from the origin equal to `sqrt(5)` is
Choose the correct alternative:
The point on the line 2x − 3y = 5 is equidistance from (1, 2) and (3, 4) is
Choose the correct alternative:
If a vertex of a square is at the origin and its one side lies along the line 4x + 3y − 20 = 0, then the area of the square is