हिंदी

If P1 and P2 Are the Lengths of the Perpendiculars from the Origin Upon the Lines X Sec θ + Y Cosec θ = a and X Cos θ − Y Sin θ = a Cos 2 θ Respectively, Then - Mathematics

Advertisements
Advertisements

प्रश्न

If p1 and p2 are the lengths of the perpendiculars from the origin upon the lines x sec θ + y cosec θ = a and x cos θ − y sin θ = a cos 2 θ respectively, then

विकल्प

  • 4p12 + p22 = a2

  • p12 + 4p22 = a2

  •  p12 + p22 = a2

  • none of these

MCQ

उत्तर

4p12 + p22 = a2

The given lines are
x sec θ + y cosec θ = a                   ... (1)
x cos θ − y sin θ = a cos 2 θ           ... (2)
p1 and p2 are the perpendiculars from the origin upon the lines (1) and (2), respectively.

\[p_1 = \left| \frac{- a}{\sqrt{\sec^2 \theta + + \cos e c^2 \theta}} \right| \text { and } p_2 = \left| \frac{- a\cos2\theta}{\sqrt{\cos^2 \theta + \sin^2 \theta}} \right|\]

\[ \Rightarrow p_1 = \left| \frac{- a\sin\theta\cos\theta}{\sqrt{\sin^2 \theta + \cos^2 \theta}} \right|\text { and } p_2 = \left| - a\cos2\theta \right|\]

\[ \Rightarrow p_1 = \frac{1}{2}\left| - a \times 2\sin\theta\cos\theta \right| \text { and } p_2 = \left| - a\cos2\theta \right|\]

\[ \Rightarrow p_1 = \frac{1}{2}\left| - a\sin2\theta \right| \text { and } p_2 = \left| - a\cos2\theta \right|\]

\[ \Rightarrow 4 {p_1}^2 + {p_2}^2 = a^2 \left( \sin^2 2\theta + \cos^2 2\theta \right)\]

\[ = a^2\]

shaalaa.com
Shifting of Origin
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.21 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.21 | Q 10 | पृष्ठ १३३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×