हिंदी

Area of the Triangle Formed by the Points ( ( a + 3 ) ( a + 4 ) , a + 3 ) , ( ( a + 2 ) ( a + 3 ) , ( a + 2 ) ) and ( ( a + 1 ) ( a + 2 ) , ( a + 1 ) ) - Mathematics

Advertisements
Advertisements

प्रश्न

Area of the triangle formed by the points \[\left( (a + 3)(a + 4), a + 3 \right), \left( (a + 2)(a + 3), (a + 2) \right) \text { and } \left( (a + 1)(a + 2), (a + 1) \right)\]

विकल्प

  • 25a2

  •  5a2

  • 24a2

  • none of these

MCQ

उत्तर

none of these

The given points are \[(\left\{ a + 3)(a + 4), \left( a + 3 \right) \right\}, \left\{ (a + 2)(a + 3), (a + 2) \right\} \text { and } \left\{ (a + 1)(a + 2), (a + 1) \right\}\].

Let A be the area of the triangle formed by these points.

\[\text { Then, } A = \frac{1}{2}\left[ x_1 \left( y_2 - y_3 \right) + x_2 \left( y_3 - y_1 \right) + x_3 \left( y_1 - y_2 \right) \right]\]

\[ \Rightarrow A = \frac{1}{2}\left[ \left( a + 3 \right)\left( a + 4 \right)\left( a + 2 - a - 1 \right) + \left( a + 2 \right)\left( a + 3 \right)\left( a + 1 - a - 3 \right) + \left( a + 1 \right)\left( a + 2 \right)\left( a + 3 - a - 2 \right) \right]\]

\[ \Rightarrow A = \frac{1}{2}\left[ \left( a + 3 \right)\left( a + 4 \right) - 2\left( a + 2 \right)\left( a + 3 \right) + \left( a + 1 \right)\left( a + 2 \right) \right]\]

\[ \Rightarrow A = \frac{1}{2}\left[ a^2 + 7a + 12 - 2 a^2 - 10a - 12 + a^2 + 3a + 2 \right]\]

\[ \Rightarrow A = 1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.21 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.21 | Q 11 | पृष्ठ १३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the distance of the point (–1, 1) from the line 12(x + 6) = 5(y – 2).


Find the distance between parallel lines:

15x + 8y – 34 = 0 and 15x + 8y + 31 = 0


What are the points on the y-axis whose distance from the line  `x/3 + y/4 = 1` is 4 units.


A ray of light passing through the point (1, 2) reflects on the x-axis at point A and the reflected ray passes through the point (5, 3). Find the coordinates of A.


Find the co-ordinates of the point, which divides the line segment joining the points A(2, − 6, 8) and B(− 1, 3, − 4) externally in the ratio 1 : 3.


A line passes through a point A (1, 2) and makes an angle of 60° with the x-axis and intersects the line x + y = 6 at the point P. Find AP.


A line a drawn through A (4, −1) parallel to the line 3x − 4y + 1 = 0. Find the coordinates of the two points on this line which are at a distance of 5 units from A.


Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to a line having slope 3/4.


Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to the line x − 2y = 1.


The perpendicular distance of a line from the origin is 5 units and its slope is − 1. Find the equation of the line.


Find the perpendicular distance of the line joining the points (cos θ, sin θ) and (cos ϕ, sin ϕ) from the origin.


Find the perpendicular distance from the origin of the perpendicular from the point (1, 2) upon the straight line \[x - \sqrt{3}y + 4 = 0 .\]


What are the points on y-axis whose distance from the line \[\frac{x}{3} + \frac{y}{4} = 1\]  is 4 units?

 

Determine the distance between the pair of parallel lines:

8x + 15y − 34 = 0 and 8x + 15y + 31 = 0


Determine the distance between the pair of parallel lines:

y = mx + c and y = mx + d


The equations of two sides of a square are 5x − 12y − 65 = 0 and 5x − 12y + 26 = 0. Find the area of the square.

 


If the centroid of a triangle formed by the points (0, 0), (cos θ, sin θ) and (sin θ, − cos θ) lies on the line y = 2x, then write the value of tan θ.


Write the value of θ ϵ \[\left( 0, \frac{\pi}{2} \right)\] for which area of the triangle formed by points O (0, 0), A (a cos θ, b sin θ) and B (a cos θ, − b sin θ) is maximum.


Write the locus of a point the sum of whose distances from the coordinates axes is unity.


Distance between the lines 5x + 3y − 7 = 0 and 15x + 9y + 14 = 0 is


The value of λ for which the lines 3x + 4y = 5, 5x + 4y = 4 and λx + 4y = 6 meet at a point is


A plane passes through (1, - 2, 1) and is perpendicular to two planes 2x - 2y + z = 0 and x - y + 2z = 4. The distance of the plane from the point (1, 2, 2) is ______.


If the tangent to the curve y = 3x2 - 2x + 1 at a point Pis parallel toy = 4x + 3, the co-ordinates of P are


If P(α, β) be a point on the line 3x + y = 0 such that the point P and the point Q(1, 1) lie on either side of the line 3x = 4y + 8, then _______.


Find the distance between the lines 3x + 4y = 9 and 6x + 8y = 15.


Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is `1/x^2 + 1/y^2 = 4/p^2` where p is a constant.


Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.


If the sum of the distances of a moving point in a plane from the axes is 1, then find the locus of the point.


The distance of the point of intersection of the lines 2x – 3y + 5 = 0 and 3x + 4y = 0 from the line 5x – 2y = 0 is ______.


A straight line passes through the origin O meet the parallel lines 4x + 2y = 9 and 2x + y + 6 = 0 at points P and Q respectively. Then, the point O divides the segment Q in the ratio:


Find the length of the perpendicular drawn from the point P(3, 2, 1) to the line `overliner = (7hati + 7hatj + 6hatk) + λ(-2hati + 2hatj + 3hatk)`


The distance of the point (2, – 3, 1) from the line `(x + 1)/2 = (y - 3)/3 = (z + 1)/-1` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×