Advertisements
Advertisements
प्रश्न
A line passes through a point A (1, 2) and makes an angle of 60° with the x-axis and intersects the line x + y = 6 at the point P. Find AP.
उत्तर
Here,
\[\left( x_1 , y_1 \right) = A \left( 1, 2 \right), \theta = {60}^\circ\]
So, the equation of the line is
\[\frac{x - x_1}{cos\theta} = \frac{y - y_1}{sin\theta} = r\]
\[ \Rightarrow \frac{x - 1}{\cos {60}^\circ} = \frac{y - 2}{\sin {60}^\circ} = r\]
\[ \Rightarrow \frac{x - 1}{\frac{1}{2}} = \frac{y - 2}{\frac{\sqrt{3}}{2}} = r\]
\[\text { Here, r represents the distance of any point on this line from point } A (1, 2) . \]
\[\text { The coordinates of any point P on this line are } \left( 1 + \frac{r}{2}, 2 + \frac{\sqrt{3}r}{2} \right) . \]
Clearly, P lies on the line x + y = 6
\[\therefore 1 + \frac{r}{2} + 2 + \frac{\sqrt{3}r}{2} = 6\]
\[ \Rightarrow \frac{\sqrt{3}r}{2} + \frac{r}{2} = 3\]
\[ \Rightarrow r\left( \sqrt{3} + 1 \right) = 6\]
\[ \Rightarrow r = \frac{6}{\sqrt{3} + 1} = 3\left( \sqrt{3} - 1 \right)\]
∴ AP = \[3\left( \sqrt{3} - 1 \right)\]
APPEARS IN
संबंधित प्रश्न
Find the distance between parallel lines l (x + y) + p = 0 and l (x + y) – r = 0
Find the equation of the line parallel to y-axis and drawn through the point of intersection of the lines x– 7y + 5 = 0 and 3x + y = 0.
Find the distance of the line 4x + 7y + 5 = 0 from the point (1, 2) along the line 2x – y = 0.
Find the direction in which a straight line must be drawn through the point (–1, 2) so that its point of intersection with the line x + y = 4 may be at a distance of 3 units from this point.
If sum of the perpendicular distances of a variable point P (x, y) from the lines x + y – 5 = 0 and 3x – 2y+ 7 = 0 is always 10. Show that P must move on a line.
Find the co-ordinates of the point, which divides the line segment joining the points A(2, − 6, 8) and B(− 1, 3, − 4) externally in the ratio 1 : 3.
Find the equation of the straight line at a distance of 3 units from the origin such that the perpendicular from the origin to the line makes an angle tan−1 \[\left( \frac{5}{12} \right)\] with the positive direction of x-axi .
A line a drawn through A (4, −1) parallel to the line 3x − 4y + 1 = 0. Find the coordinates of the two points on this line which are at a distance of 5 units from A.
Find the distance of the point (2, 3) from the line 2x − 3y + 9 = 0 measured along a line making an angle of 45° with the x-axis.
Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to a line having slope 3/4.
Find the equation of a line perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and at a distance of 3 units from the origin.
Find the distance of the point (4, 5) from the straight line 3x − 5y + 7 = 0.
Show that the path of a moving point such that its distances from two lines 3x − 2y = 5 and 3x + 2y = 5 are equal is a straight line.
If sum of perpendicular distances of a variable point P (x, y) from the lines x + y − 5 = 0 and 3x − 2y + 7 = 0 is always 10. Show that P must move on a line.
If the length of the perpendicular from the point (1, 1) to the line ax − by + c = 0 be unity, show that \[\frac{1}{c} + \frac{1}{a} - \frac{1}{b} = \frac{c}{2ab}\] .
Prove that the lines 2x + 3y = 19 and 2x + 3y + 7 = 0 are equidistant from the line 2x + 3y= 6.
Find the ratio in which the line 3x + 4y + 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0
Find the equations of the lines through the point of intersection of the lines x − y + 1 = 0 and 2x − 3y+ 5 = 0, whose distance from the point(3, 2) is 7/5.
If the centroid of a triangle formed by the points (0, 0), (cos θ, sin θ) and (sin θ, − cos θ) lies on the line y = 2x, then write the value of tan θ.
Write the value of θ ϵ \[\left( 0, \frac{\pi}{2} \right)\] for which area of the triangle formed by points O (0, 0), A (a cos θ, b sin θ) and B (a cos θ, − b sin θ) is maximum.
L is a variable line such that the algebraic sum of the distances of the points (1, 1), (2, 0) and (0, 2) from the line is equal to zero. The line L will always pass through
The line segment joining the points (−3, −4) and (1, −2) is divided by y-axis in the ratio
The value of λ for which the lines 3x + 4y = 5, 5x + 4y = 4 and λx + 4y = 6 meet at a point is
The vertices of a triangle are (6, 0), (0, 6) and (6, 6). The distance between its circumcentre and centroid is
If the tangent to the curve y = 3x2 - 2x + 1 at a point Pis parallel toy = 4x + 3, the co-ordinates of P are
If P(α, β) be a point on the line 3x + y = 0 such that the point P and the point Q(1, 1) lie on either side of the line 3x = 4y + 8, then _______.
Find the distance between the lines 3x + 4y = 9 and 6x + 8y = 15.
Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is `1/x^2 + 1/y^2 = 4/p^2` where p is a constant.
The distance of the point P(1, – 3) from the line 2y – 3x = 4 is ______.
Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.
If the sum of the distances of a moving point in a plane from the axes is 1, then find the locus of the point.
The distance of the point of intersection of the lines 2x – 3y + 5 = 0 and 3x + 4y = 0 from the line 5x – 2y = 0 is ______.