Advertisements
Advertisements
प्रश्न
A line a drawn through A (4, −1) parallel to the line 3x − 4y + 1 = 0. Find the coordinates of the two points on this line which are at a distance of 5 units from A.
उत्तर
The slope of the line 3x − 4y + 1 = 0 or \[y = \frac{3}{4}x - \frac{1}{4}\] is \[\frac{3}{4}\]
So, the slope of the required line is also \[\frac{3}{4}\] as it is parallel to the given line.
\[\therefore \tan\theta = \frac{3}{4} \Rightarrow sin\theta = \frac{3}{5} \text { and } cos\theta = \frac{4}{5}\]
Here,
\[\left( x_1 , y_1 \right) = A \left( 4, - 1 \right)\]
So, the equation of the line passing through A (4, −1) and having slope \[\frac{3}{4}\] is
\[\frac{x - x_1}{cos\theta} = \frac{y - y_1}{sin\theta}\]
\[ \Rightarrow \frac{x - 4}{\frac{4}{5}} = \frac{y + 1}{\frac{3}{5}}\]
\[ \Rightarrow 3x - 12 = 4y + 4\]
\[ \Rightarrow 3x - 4y - 16 = 0\]
Here,AP = r = 5
Thus, the coordinates of P are given by
\[x = x_1 \pm r\text { cos } \theta, y = y_1 \pm r\text { sin }\theta\]
\[ \Rightarrow x = 4 \pm 5\left( \frac{4}{5} \right), y = - 1 \pm 5\left( \frac{3}{5} \right)\]
\[\Rightarrow x = 4 \pm 4, y = - 1 \pm 3\]
\[ \Rightarrow x = 8, y = 2 \text { and } x = 0, y = - 4\]
Hence, the coordinates of the two points at a distance of 5 units from A are (8, 2) and (0, −4).
APPEARS IN
संबंधित प्रश्न
Find the distance of the point (–1, 1) from the line 12(x + 6) = 5(y – 2).
Find the equation of the line parallel to y-axis and drawn through the point of intersection of the lines x– 7y + 5 = 0 and 3x + y = 0.
Find the distance of the line 4x + 7y + 5 = 0 from the point (1, 2) along the line 2x – y = 0.
Find the direction in which a straight line must be drawn through the point (–1, 2) so that its point of intersection with the line x + y = 4 may be at a distance of 3 units from this point.
A ray of light passing through the point (1, 2) reflects on the x-axis at point A and the reflected ray passes through the point (5, 3). Find the coordinates of A.
Find the co-ordinates of the point, which divides the line segment joining the points A(2, − 6, 8) and B(− 1, 3, − 4) externally in the ratio 1 : 3.
Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with the positive direction of x-axis is 15°.
Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to a line having slope 1/2.
Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to a line having slope 3/4.
The perpendicular distance of a line from the origin is 5 units and its slope is − 1. Find the equation of the line.
Find the distance of the point (4, 5) from the straight line 3x − 5y + 7 = 0.
What are the points on X-axis whose perpendicular distance from the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] is a ?
What are the points on y-axis whose distance from the line \[\frac{x}{3} + \frac{y}{4} = 1\] is 4 units?
Show that the path of a moving point such that its distances from two lines 3x − 2y = 5 and 3x + 2y = 5 are equal is a straight line.
If sum of perpendicular distances of a variable point P (x, y) from the lines x + y − 5 = 0 and 3x − 2y + 7 = 0 is always 10. Show that P must move on a line.
Determine the distance between the pair of parallel lines:
y = mx + c and y = mx + d
Determine the distance between the pair of parallel lines:
4x + 3y − 11 = 0 and 8x + 6y = 15
The equations of two sides of a square are 5x − 12y − 65 = 0 and 5x − 12y + 26 = 0. Find the area of the square.
If the centroid of a triangle formed by the points (0, 0), (cos θ, sin θ) and (sin θ, − cos θ) lies on the line y = 2x, then write the value of tan θ.
Write the value of θ ϵ \[\left( 0, \frac{\pi}{2} \right)\] for which area of the triangle formed by points O (0, 0), A (a cos θ, b sin θ) and B (a cos θ, − b sin θ) is maximum.
Write the locus of a point the sum of whose distances from the coordinates axes is unity.
The line segment joining the points (−3, −4) and (1, −2) is divided by y-axis in the ratio
The line segment joining the points (1, 2) and (−2, 1) is divided by the line 3x + 4y = 7 in the ratio ______.
Distance between the lines 5x + 3y − 7 = 0 and 15x + 9y + 14 = 0 is
If P(α, β) be a point on the line 3x + y = 0 such that the point P and the point Q(1, 1) lie on either side of the line 3x = 4y + 8, then _______.
Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is `1/x^2 + 1/y^2 = 4/p^2` where p is a constant.
The distance of the point P(1, – 3) from the line 2y – 3x = 4 is ______.
Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.
The distance between the lines y = mx + c1 and y = mx + c2 is ______.
A straight line passes through the origin O meet the parallel lines 4x + 2y = 9 and 2x + y + 6 = 0 at points P and Q respectively. Then, the point O divides the segment Q in the ratio:
Find the length of the perpendicular drawn from the point P(3, 2, 1) to the line `overliner = (7hati + 7hatj + 6hatk) + λ(-2hati + 2hatj + 3hatk)`
The distance of the point (2, – 3, 1) from the line `(x + 1)/2 = (y - 3)/3 = (z + 1)/-1` is ______.