हिंदी

A Line a Drawn Through a (4, −1) Parallel to the Line 3x − 4y + 1 = 0. Find the Coordinates of the Two Points on this Line Which Are at a Distance of 5 Units from A. - Mathematics

Advertisements
Advertisements

प्रश्न

A line a drawn through A (4, −1) parallel to the line 3x − 4y + 1 = 0. Find the coordinates of the two points on this line which are at a distance of 5 units from A.

संक्षेप में उत्तर

उत्तर

The slope of the line 3x − 4y + 1 = 0 or  \[y = \frac{3}{4}x - \frac{1}{4}\] is \[\frac{3}{4}\]

So, the slope of the required line is also \[\frac{3}{4}\] as it is parallel to the given line. 

\[\therefore \tan\theta = \frac{3}{4} \Rightarrow sin\theta = \frac{3}{5} \text { and } cos\theta = \frac{4}{5}\]

Here,

\[\left( x_1 , y_1 \right) = A \left( 4, - 1 \right)\]

So, the equation of the line passing through A (4, −1) and having slope \[\frac{3}{4}\] is  

\[\frac{x - x_1}{cos\theta} = \frac{y - y_1}{sin\theta}\]

\[ \Rightarrow \frac{x - 4}{\frac{4}{5}} = \frac{y + 1}{\frac{3}{5}}\]

\[ \Rightarrow 3x - 12 = 4y + 4\]

\[ \Rightarrow 3x - 4y - 16 = 0\]

Here,AP = r = 5
Thus, the coordinates of P are given by

\[x = x_1 \pm r\text { cos } \theta, y = y_1 \pm r\text { sin }\theta\]

\[ \Rightarrow x = 4 \pm 5\left( \frac{4}{5} \right), y = - 1 \pm 5\left( \frac{3}{5} \right)\]

\[\Rightarrow x = 4 \pm 4, y = - 1 \pm 3\]

\[ \Rightarrow x = 8, y = 2 \text { and } x = 0, y = - 4\]

Hence, the coordinates of the two points at a distance of 5 units from A are (8, 2) and (0, −4).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.8 [पृष्ठ ६५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.8 | Q 4 | पृष्ठ ६५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the distance of the point (–1, 1) from the line 12(x + 6) = 5(y – 2).


Find the equation of the line parallel to y-axis and drawn through the point of intersection of the lines x– 7y + 5 = 0 and 3x + y = 0.


Find the distance of the line 4x + 7y + 5 = 0 from the point (1, 2) along the line 2x – y = 0.


Find the direction in which a straight line must be drawn through the point (–1, 2) so that its point of intersection with the line x + y = 4 may be at a distance of 3 units from this point.


A ray of light passing through the point (1, 2) reflects on the x-axis at point A and the reflected ray passes through the point (5, 3). Find the coordinates of A.


Find the co-ordinates of the point, which divides the line segment joining the points A(2, − 6, 8) and B(− 1, 3, − 4) externally in the ratio 1 : 3.


Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with the positive direction of x-axis is 15°.


Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to a line having slope 1/2.


Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to a line having slope 3/4.


The perpendicular distance of a line from the origin is 5 units and its slope is − 1. Find the equation of the line.


Find the distance of the point (4, 5) from the straight line 3x − 5y + 7 = 0.


What are the points on X-axis whose perpendicular distance from the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] is a ?


What are the points on y-axis whose distance from the line \[\frac{x}{3} + \frac{y}{4} = 1\]  is 4 units?

 

Show that the path of a moving point such that its distances from two lines 3x − 2y = 5 and 3x + 2y = 5 are equal is a straight line.


If sum of perpendicular distances of a variable point P (xy) from the lines x + y − 5 = 0 and 3x − 2y + 7 = 0 is always 10. Show that P must move on a line.


Determine the distance between the pair of parallel lines:

y = mx + c and y = mx + d


Determine the distance between the pair of parallel lines:

4x + 3y − 11 = 0 and 8x + 6y = 15


The equations of two sides of a square are 5x − 12y − 65 = 0 and 5x − 12y + 26 = 0. Find the area of the square.

 


If the centroid of a triangle formed by the points (0, 0), (cos θ, sin θ) and (sin θ, − cos θ) lies on the line y = 2x, then write the value of tan θ.


Write the value of θ ϵ \[\left( 0, \frac{\pi}{2} \right)\] for which area of the triangle formed by points O (0, 0), A (a cos θ, b sin θ) and B (a cos θ, − b sin θ) is maximum.


Write the locus of a point the sum of whose distances from the coordinates axes is unity.


The line segment joining the points (−3, −4) and (1, −2) is divided by y-axis in the ratio


The line segment joining the points (1, 2) and (−2, 1) is divided by the line 3x + 4y = 7 in the ratio ______.


Distance between the lines 5x + 3y − 7 = 0 and 15x + 9y + 14 = 0 is


If P(α, β) be a point on the line 3x + y = 0 such that the point P and the point Q(1, 1) lie on either side of the line 3x = 4y + 8, then _______.


Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is `1/x^2 + 1/y^2 = 4/p^2` where p is a constant.


The distance of the point P(1, – 3) from the line 2y – 3x = 4 is ______.


Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.


The distance between the lines y = mx + c1 and y = mx + c2 is ______.


A straight line passes through the origin O meet the parallel lines 4x + 2y = 9 and 2x + y + 6 = 0 at points P and Q respectively. Then, the point O divides the segment Q in the ratio:


Find the length of the perpendicular drawn from the point P(3, 2, 1) to the line `overliner = (7hati + 7hatj + 6hatk) + λ(-2hati + 2hatj + 3hatk)`


The distance of the point (2, – 3, 1) from the line `(x + 1)/2 = (y - 3)/3 = (z + 1)/-1` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×