Advertisements
Advertisements
प्रश्न
Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to a line having slope 1/2.
उत्तर
\[\text { Here, } \left( x_1 , y_1 \right) = A\left( 3, 5 \right), \tan\theta = \frac{1}{2}\]
\[ \Rightarrow sin\theta = \frac{1}{\sqrt{1^2 + 2^2}} \text { and }cos\theta = \frac{2}{\sqrt{1^2 + 2^2}}\]
\[ \Rightarrow sin\theta = \frac{1}{\sqrt{5}}\text { and } cos\theta = \frac{2}{\sqrt{5}}\]
So, the equation of the line passing through (3, 5) and having slope \[\frac{1}{2}\] is
\[\frac{x - x_1}{cos\theta} = \frac{y - y_1}{sin\theta}\]
\[ \Rightarrow \frac{x - 3}{\frac{2}{\sqrt{5}}} = \frac{y - 5}{\frac{1}{\sqrt{5}}}\]
\[ \Rightarrow x - 2y + 7 = 0\]
Let AP = r
Then, the coordinates of P are given by \[\frac{x - 3}{\frac{2}{\sqrt{5}}} = \frac{y - 5}{\frac{1}{\sqrt{5}}} = r\]
\[\therefore 2\left( 3 + \frac{2r}{\sqrt{5}} \right) + 3\left( 5 + \frac{r}{\sqrt{5}} \right) = 14\]
\[ \Rightarrow 6 + \frac{4r}{\sqrt{5}} + 15 + \frac{3r}{\sqrt{5}} = 14\]
\[ \Rightarrow \frac{7r}{\sqrt{5}} = - 7\]
\[ \Rightarrow r = - \sqrt{5}\]
Hence, the distance of the point (3, 5) from the line 2x + 3y = 14 is \[\sqrt{5}\].
APPEARS IN
संबंधित प्रश्न
If the lines `(x-1)/2=(y+1)/3=(z-1)/4 ` and `(x-3)/1=(y-k)/2=z/1` intersect each other then find value of k
Find the distance between parallel lines:
15x + 8y – 34 = 0 and 15x + 8y + 31 = 0
Find perpendicular distance from the origin to the line joining the points (cosΘ, sin Θ) and (cosΦ, sin Φ).
Find the equation of the line parallel to y-axis and drawn through the point of intersection of the lines x– 7y + 5 = 0 and 3x + y = 0.
If sum of the perpendicular distances of a variable point P (x, y) from the lines x + y – 5 = 0 and 3x – 2y+ 7 = 0 is always 10. Show that P must move on a line.
A ray of light passing through the point (1, 2) reflects on the x-axis at point A and the reflected ray passes through the point (5, 3). Find the coordinates of A.
Find the co-ordinates of the point, which divides the line segment joining the points A(2, − 6, 8) and B(− 1, 3, − 4) externally in the ratio 1 : 3.
Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with the positive direction of x-axis is 15°.
Find the equation of the straight line at a distance of 3 units from the origin such that the perpendicular from the origin to the line makes an angle tan−1 \[\left( \frac{5}{12} \right)\] with the positive direction of x-axi .
Find the distance of the point (2, 3) from the line 2x − 3y + 9 = 0 measured along a line making an angle of 45° with the x-axis.
Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to the line x − 2y = 1.
The perpendicular distance of a line from the origin is 5 units and its slope is − 1. Find the equation of the line.
Find the equation of a line perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and at a distance of 3 units from the origin.
Find the distance of the point (4, 5) from the straight line 3x − 5y + 7 = 0.
Find the distance of the point of intersection of the lines 2x + 3y = 21 and 3x − 4y + 11 = 0 from the line 8x + 6y + 5 = 0.
Find the perpendicular distance from the origin of the perpendicular from the point (1, 2) upon the straight line \[x - \sqrt{3}y + 4 = 0 .\]
What are the points on y-axis whose distance from the line \[\frac{x}{3} + \frac{y}{4} = 1\] is 4 units?
Determine the distance between the pair of parallel lines:
4x + 3y − 11 = 0 and 8x + 6y = 15
Prove that the lines 2x + 3y = 19 and 2x + 3y + 7 = 0 are equidistant from the line 2x + 3y= 6.
Find the equations of the lines through the point of intersection of the lines x − y + 1 = 0 and 2x − 3y+ 5 = 0, whose distance from the point(3, 2) is 7/5.
Write the distance between the lines 4x + 3y − 11 = 0 and 8x + 6y − 15 = 0.
If the lines x + ay + a = 0, bx + y + b = 0 and cx + cy + 1 = 0 are concurrent, then write the value of 2abc − ab − bc − ca.
Write the locus of a point the sum of whose distances from the coordinates axes is unity.
L is a variable line such that the algebraic sum of the distances of the points (1, 1), (2, 0) and (0, 2) from the line is equal to zero. The line L will always pass through
The area of a triangle with vertices at (−4, −1), (1, 2) and (4, −3) is
A plane passes through (1, - 2, 1) and is perpendicular to two planes 2x - 2y + z = 0 and x - y + 2z = 4. The distance of the plane from the point (1, 2, 2) is ______.
Find the distance between the lines 3x + 4y = 9 and 6x + 8y = 15.
A point moves such that its distance from the point (4, 0) is half that of its distance from the line x = 16. The locus of the point is ______.
Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.
The distance of the point of intersection of the lines 2x – 3y + 5 = 0 and 3x + 4y = 0 from the line 5x – 2y = 0 is ______.
A point equidistant from the lines 4x + 3y + 10 = 0, 5x – 12y + 26 = 0 and 7x + 24y – 50 = 0 is ______.
The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the lines 3x + 4y + 5 = 0 and 3x + 4y – 5 = 0 is ______.
A straight line passes through the origin O meet the parallel lines 4x + 2y = 9 and 2x + y + 6 = 0 at points P and Q respectively. Then, the point O divides the segment Q in the ratio: