हिंदी

Find the Distance of the Point (4, 5) from the Straight Line 3x − 5y + 7 = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the distance of the point (4, 5) from the straight line 3x − 5y + 7 = 0.

संक्षेप में उत्तर

उत्तर

Comparing ax + by + c = 0 and 3x − 5y + 7 = 0, we get:
a = 3, b = − 5 and c = 7
So, the distance of the point (4, 5) from the straight line 3x − 5y + 7 = 0 is

\[d = \left| \frac{a x_1 + b y_1 + c}{\sqrt{a^2 + b^2}} \right|\]

\[ \Rightarrow d = \left| \frac{3 \times 4 - 5 \times 5 + 7}{\sqrt{3^2 + \left( - 5 \right)^2}} \right| = \frac{6}{\sqrt{34}}\]

Hence, the required distance is \[\frac{6}{\sqrt{34}}\].

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.15 [पृष्ठ १०७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.15 | Q 1 | पृष्ठ १०७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the points on the x-axis, whose distances from the `x/3 +y/4 = 1`  are 4 units.


Find the distance between parallel lines  l (x + y) + p = 0 and l (x + y) – r = 0


What are the points on the y-axis whose distance from the line  `x/3 + y/4 = 1` is 4 units.


Find the equation of the line parallel to y-axis and drawn through the point of intersection of the lines x– 7y + 5 = 0 and 3x + y = 0.


Find the distance of the line 4x + 7y + 5 = 0 from the point (1, 2) along the line 2x – y = 0.


If sum of the perpendicular distances of a variable point P (x, y) from the lines x + y – 5 = 0 and 3x – 2y+ 7 = 0 is always 10. Show that P must move on a line.


Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with the positive direction of x-axis is 15°.


Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to the line 3x − 4y+ 8 = 0.


Find the distance of the line 2x + y = 3 from the point (−1, −3) in the direction of the line whose slope is 1.


Find the equation of a line perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and at a distance of 3 units from the origin.


Find the perpendicular distance of the line joining the points (cos θ, sin θ) and (cos ϕ, sin ϕ) from the origin.


Find the distance of the point of intersection of the lines 2x + 3y = 21 and 3x − 4y + 11 = 0 from the line 8x + 6y + 5 = 0.


Find the perpendicular distance from the origin of the perpendicular from the point (1, 2) upon the straight line \[x - \sqrt{3}y + 4 = 0 .\]


Show that the path of a moving point such that its distances from two lines 3x − 2y = 5 and 3x + 2y = 5 are equal is a straight line.


If sum of perpendicular distances of a variable point P (xy) from the lines x + y − 5 = 0 and 3x − 2y + 7 = 0 is always 10. Show that P must move on a line.


If the length of the perpendicular from the point (1, 1) to the line ax − by + c = 0 be unity, show that \[\frac{1}{c} + \frac{1}{a} - \frac{1}{b} = \frac{c}{2ab}\] .

 


Determine the distance between the pair of parallel lines:

8x + 15y − 34 = 0 and 8x + 15y + 31 = 0


Determine the distance between the pair of parallel lines:

y = mx + c and y = mx + d


Find the equation of two straight lines which are parallel to + 7y + 2 = 0 and at unit distance from the point (1, −1).

Answer 3:


Prove that the lines 2x + 3y = 19 and 2x + 3y + 7 = 0 are equidistant from the line 2x + 3y= 6.


Find the ratio in which the line 3x + 4+ 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0 


If the centroid of a triangle formed by the points (0, 0), (cos θ, sin θ) and (sin θ, − cos θ) lies on the line y = 2x, then write the value of tan θ.


Write the value of θ ϵ \[\left( 0, \frac{\pi}{2} \right)\] for which area of the triangle formed by points O (0, 0), A (a cos θ, b sin θ) and B (a cos θ, − b sin θ) is maximum.


Write the distance between the lines 4x + 3y − 11 = 0 and 8x + 6y − 15 = 0.


L is a variable line such that the algebraic sum of the distances of the points (1, 1), (2, 0) and (0, 2) from the line is equal to zero. The line L will always pass through


Area of the triangle formed by the points \[\left( (a + 3)(a + 4), a + 3 \right), \left( (a + 2)(a + 3), (a + 2) \right) \text { and } \left( (a + 1)(a + 2), (a + 1) \right)\]


The line segment joining the points (1, 2) and (−2, 1) is divided by the line 3x + 4y = 7 in the ratio ______.


Distance between the lines 5x + 3y − 7 = 0 and 15x + 9y + 14 = 0 is


Find the distance between the lines 3x + 4y = 9 and 6x + 8y = 15.


Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is `1/x^2 + 1/y^2 = 4/p^2` where p is a constant.


The distance between the lines y = mx + c1 and y = mx + c2 is ______.


A point equidistant from the lines 4x + 3y + 10 = 0, 5x – 12y + 26 = 0 and 7x + 24y – 50 = 0 is ______.


The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the lines 3x + 4y + 5 = 0 and 3x + 4y – 5 = 0 is ______.


A point moves so that square of its distance from the point (3, –2) is numerically equal to its distance from the line 5x – 12y = 3. The equation of its locus is ______.


A straight line passes through the origin O meet the parallel lines 4x + 2y = 9 and 2x + y + 6 = 0 at points P and Q respectively. Then, the point O divides the segment Q in the ratio:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×