Advertisements
Advertisements
प्रश्न
Find the distance of the line 2x + y = 3 from the point (−1, −3) in the direction of the line whose slope is 1.
उत्तर
Here,
\[\left( x_1 , y_1 \right) = A\left( - 1, - 3 \right)\] and \[tan\theta = 1 \Rightarrow sin\theta = \frac{1}{\sqrt{2}}, cos\theta = \frac{1}{\sqrt{2}}\]
So, the equation of the line is
\[\frac{x - x_1}{cos\theta} = \frac{y - y_1}{sin\theta}\]
\[ \Rightarrow \frac{x + 1}{\frac{1}{\sqrt{2}}} = \frac{y + 3}{\frac{1}{\sqrt{2}}}\]
\[ \Rightarrow x + 1 = y + 3\]
\[ \Rightarrow x - y - 2 = 0\]
Let line
\[x - y - 2 = 0\] cut line 2x + y = 3 at P.
Let AP = r
Then, the coordinates of P are given by \[\frac{x + 1}{cos\theta} = \frac{y + 3}{sin\theta} = r\]
\[\Rightarrow x = - 1 + rcos\theta, y = - 3 + rsin\theta\]
\[\Rightarrow x = - 1 + \frac{r}{\sqrt{2}}, y = - 3 + \frac{r}{\sqrt{2}}\]
Thus, the coordinates of P are \[\left( - 1 + \frac{r}{\sqrt{2}}, - 3 + \frac{r}{\sqrt{2}} \right)\]
Clearly, P lies on the line 2x + y = 3.
\[\therefore 2\left( - 1 + \frac{r}{\sqrt{2}} \right) - 3 + \frac{r}{\sqrt{2}} = 3\]
\[ \Rightarrow - 2 - \sqrt{2}r - 3 + \frac{r}{\sqrt{2}} = 3\]
\[ \Rightarrow \frac{3r}{\sqrt{2}} = 8\]
\[ \Rightarrow r = \frac{8\sqrt{2}}{3}\]
∴ AP = \[\frac{8\sqrt{2}}{3}\]
APPEARS IN
संबंधित प्रश्न
Find the distance of the point (–1, 1) from the line 12(x + 6) = 5(y – 2).
Find the distance between parallel lines:
15x + 8y – 34 = 0 and 15x + 8y + 31 = 0
Find perpendicular distance from the origin to the line joining the points (cosΘ, sin Θ) and (cosΦ, sin Φ).
Find the distance of the line 4x + 7y + 5 = 0 from the point (1, 2) along the line 2x – y = 0.
Find the direction in which a straight line must be drawn through the point (–1, 2) so that its point of intersection with the line x + y = 4 may be at a distance of 3 units from this point.
Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with the positive direction of x-axis is 15°.
A line a drawn through A (4, −1) parallel to the line 3x − 4y + 1 = 0. Find the coordinates of the two points on this line which are at a distance of 5 units from A.
Find the distance of the point (2, 3) from the line 2x − 3y + 9 = 0 measured along a line making an angle of 45° with the x-axis.
Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to a line having slope 1/2.
Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to a line having slope 3/4.
Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to the line x − 2y = 1.
The perpendicular distance of a line from the origin is 5 units and its slope is − 1. Find the equation of the line.
Show that the perpendiculars let fall from any point on the straight line 2x + 11y − 5 = 0 upon the two straight lines 24x + 7y = 20 and 4x − 3y − 2 = 0 are equal to each other.
What are the points on X-axis whose perpendicular distance from the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] is a ?
Show that the product of perpendiculars on the line \[\frac{x}{a} \cos \theta + \frac{y}{b} \sin \theta = 1\] from the points \[( \pm \sqrt{a^2 - b^2}, 0) \text { is }b^2 .\]
Show that the path of a moving point such that its distances from two lines 3x − 2y = 5 and 3x + 2y = 5 are equal is a straight line.
If sum of perpendicular distances of a variable point P (x, y) from the lines x + y − 5 = 0 and 3x − 2y + 7 = 0 is always 10. Show that P must move on a line.
If the length of the perpendicular from the point (1, 1) to the line ax − by + c = 0 be unity, show that \[\frac{1}{c} + \frac{1}{a} - \frac{1}{b} = \frac{c}{2ab}\] .
Determine the distance between the pair of parallel lines:
8x + 15y − 34 = 0 and 8x + 15y + 31 = 0
Determine the distance between the pair of parallel lines:
4x + 3y − 11 = 0 and 8x + 6y = 15
Write the value of θ ϵ \[\left( 0, \frac{\pi}{2} \right)\] for which area of the triangle formed by points O (0, 0), A (a cos θ, b sin θ) and B (a cos θ, − b sin θ) is maximum.
L is a variable line such that the algebraic sum of the distances of the points (1, 1), (2, 0) and (0, 2) from the line is equal to zero. The line L will always pass through
Distance between the lines 5x + 3y − 7 = 0 and 15x + 9y + 14 = 0 is
The value of λ for which the lines 3x + 4y = 5, 5x + 4y = 4 and λx + 4y = 6 meet at a point is
The vertices of a triangle are (6, 0), (0, 6) and (6, 6). The distance between its circumcentre and centroid is
A plane passes through (1, - 2, 1) and is perpendicular to two planes 2x - 2y + z = 0 and x - y + 2z = 4. The distance of the plane from the point (1, 2, 2) is ______.
Find the distance between the lines 3x + 4y = 9 and 6x + 8y = 15.
Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is `1/x^2 + 1/y^2 = 4/p^2` where p is a constant.
The distance of the point P(1, – 3) from the line 2y – 3x = 4 is ______.
A point moves such that its distance from the point (4, 0) is half that of its distance from the line x = 16. The locus of the point is ______.
The distance of the point of intersection of the lines 2x – 3y + 5 = 0 and 3x + 4y = 0 from the line 5x – 2y = 0 is ______.
A point moves so that square of its distance from the point (3, –2) is numerically equal to its distance from the line 5x – 12y = 3. The equation of its locus is ______.
The value of the λ, if the lines (2x + 3y + 4) + λ (6x – y + 12) = 0 are
Column C1 | Column C2 |
(a) Parallel to y-axis is | (i) λ = `-3/4` |
(b) Perpendicular to 7x + y – 4 = 0 is | (ii) λ = `-1/3` |
(c) Passes through (1, 2) is | (iii) λ = `-17/41` |
(d) Parallel to x axis is | λ = 3 |
Find the length of the perpendicular drawn from the point P(3, 2, 1) to the line `overliner = (7hati + 7hatj + 6hatk) + λ(-2hati + 2hatj + 3hatk)`