Advertisements
Advertisements
प्रश्न
The value of the λ, if the lines (2x + 3y + 4) + λ (6x – y + 12) = 0 are
Column C1 | Column C2 |
(a) Parallel to y-axis is | (i) λ = `-3/4` |
(b) Perpendicular to 7x + y – 4 = 0 is | (ii) λ = `-1/3` |
(c) Passes through (1, 2) is | (iii) λ = `-17/41` |
(d) Parallel to x axis is | λ = 3 |
उत्तर
Column C1 | Column C2 |
(a) Parallel to y-axis is | (i) λ = 3 |
(b) Perpendicular to 7x + y – 4 = 0 is | (ii) λ = `-17/41` |
(c) Passes through (1, 2) is | (iii) λ = `-3/4` |
(d) Parallel to x axis is | (iv) λ = `-1/3` |
Explanation:
(a) Given equation is
(2x + 3y + 4) + λ(6x – y + 12) = 0
⇒ (2 + 6λ)x + (3 – λ)y + 4 + 12λ = 0 ......(i)
If equation (i) is parallel to y-axis
Then 3 – λ = 0
⇒ λ = 3
(b) Given lines are
(2x + 3y + 4) + λ(6x – y + 12) = 0 ......(i)
⇒ (2 + 6λ)x + (3 – λ)y + 4 + 12l = 0
Slope = `-((2 + 6lambda)/(3 - lambda))`
Second equation is 7x + y – 4 = 0 ......(ii)
Slope = – 7
If equation (i) and eq. (ii) are perpendicular to each other
∴ `(-)[-((2 + 6lambda)/(3 - lambda))]` = – 1
⇒ `(14 + 42lambda)/(3 - lambda)` = – 1
⇒ 14 + 42λ = – 3 + λ
⇒ 42λ – λ = – 17
⇒ 41λ = – 17
⇒ λ = `- 17/41`
(c) Given equation is (2x + 3y + 4) + l(6x – y + 12) = 0 ......(i)
If equation (i) passes through the given point (1, 2) then
(2 × 1 + 3 × 2 + 4) + λ(6 × 1 – 2 + 12) = 0
⇒ (2 + 6 + 4) + λ(6 – 2 + 12) = 0
⇒ 12 + 16λ = 0
⇒ λ = `(-12)/16 = (-3)/4`
(d) The given equation is (2x + 3y + 4) + l(6x – y + 12) = 0
⇒ (2 + 6λ)x + (3 – λ)y + 4 + 12λ = 0 ......(i)
If equation (i) is parallel to x-axis, then
2 + 6λ = 0
⇒ λ = `(-1)/3`
APPEARS IN
संबंधित प्रश्न
If the lines `(x-1)/2=(y+1)/3=(z-1)/4 ` and `(x-3)/1=(y-k)/2=z/1` intersect each other then find value of k
Find the points on the x-axis, whose distances from the `x/3 +y/4 = 1` are 4 units.
Find the distance between parallel lines:
15x + 8y – 34 = 0 and 15x + 8y + 31 = 0
What are the points on the y-axis whose distance from the line `x/3 + y/4 = 1` is 4 units.
If sum of the perpendicular distances of a variable point P (x, y) from the lines x + y – 5 = 0 and 3x – 2y+ 7 = 0 is always 10. Show that P must move on a line.
Find the distance of the point (2, 3) from the line 2x − 3y + 9 = 0 measured along a line making an angle of 45° with the x-axis.
Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to a line having slope 1/2.
Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to the line x − 2y = 1.
Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to the line 3x − 4y+ 8 = 0.
Find the distance of the line 2x + y = 3 from the point (−1, −3) in the direction of the line whose slope is 1.
Find the equation of a line perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and at a distance of 3 units from the origin.
Find the distance of the point (4, 5) from the straight line 3x − 5y + 7 = 0.
Find the distance of the point of intersection of the lines 2x + 3y = 21 and 3x − 4y + 11 = 0 from the line 8x + 6y + 5 = 0.
What are the points on y-axis whose distance from the line \[\frac{x}{3} + \frac{y}{4} = 1\] is 4 units?
Show that the path of a moving point such that its distances from two lines 3x − 2y = 5 and 3x + 2y = 5 are equal is a straight line.
If sum of perpendicular distances of a variable point P (x, y) from the lines x + y − 5 = 0 and 3x − 2y + 7 = 0 is always 10. Show that P must move on a line.
Write the value of θ ϵ \[\left( 0, \frac{\pi}{2} \right)\] for which area of the triangle formed by points O (0, 0), A (a cos θ, b sin θ) and B (a cos θ, − b sin θ) is maximum.
If the lines x + ay + a = 0, bx + y + b = 0 and cx + cy + 1 = 0 are concurrent, then write the value of 2abc − ab − bc − ca.
The line segment joining the points (−3, −4) and (1, −2) is divided by y-axis in the ratio
The vertices of a triangle are (6, 0), (0, 6) and (6, 6). The distance between its circumcentre and centroid is
Find the distance between the lines 3x + 4y = 9 and 6x + 8y = 15.
Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is `1/x^2 + 1/y^2 = 4/p^2` where p is a constant.
The distance of the point P(1, – 3) from the line 2y – 3x = 4 is ______.
The distance of the point of intersection of the lines 2x – 3y + 5 = 0 and 3x + 4y = 0 from the line 5x – 2y = 0 is ______.
The distance between the lines y = mx + c1 and y = mx + c2 is ______.
A point equidistant from the lines 4x + 3y + 10 = 0, 5x – 12y + 26 = 0 and 7x + 24y – 50 = 0 is ______.
A straight line passes through the origin O meet the parallel lines 4x + 2y = 9 and 2x + y + 6 = 0 at points P and Q respectively. Then, the point O divides the segment Q in the ratio:
Find the length of the perpendicular drawn from the point P(3, 2, 1) to the line `overliner = (7hati + 7hatj + 6hatk) + λ(-2hati + 2hatj + 3hatk)`