Advertisements
Advertisements
प्रश्न
The equation of the line through the intersection of the lines 2x – 3y = 0 and 4x – 5y = 2 and
Column C1 | Column C2 |
(a) Through the point (2, 1) is | (i) 2x – y = 4 |
(b) Perpendicular to the line (ii) x + y – 5 = 0 x + 2y + 1 = 0 is |
(ii) x + y – 5 = 0 |
(c) Parallel to the line (iii) x – y –1 = 0 3x – 4y + 5 = 0 is |
(iii) x – y –1 = 0 |
(d) Equally inclined to the axes is | (iv) 3x – 4y – 1 = 0 |
उत्तर
Column C1 | Column C2 |
(a) Through the point (2, 1) is | (i) x – y –1 = 0 |
(b) Perpendicular to the line (ii) x + y – 5 = 0 x + 2y + 1 = 0 is |
(ii) 2x – y = 4 |
(c) Parallel to the line (iii) x – y –1 = 0 3x – 4y + 5 = 0 is |
(iii) 3x – 4y – 1 = 0 |
(d) Equally inclined to the axes is | (iv) x + y – 5 = 0 |
Explanation:
(a) Given equations are 2x – 3y = 0 ......(i)
And 4x – 5y = 2 ......(ii)
Equations of line passing through eq. (i) and (ii) we get
(2x – 3y) + k(4x – 5y –2) = 0 .....(iii)
If equation (iii) passes through (2, 1), we get
(2 × 2 – 3 × 1) + k(4 × 2 – 5 × 1 – 2) = 0
⇒ (4 – 3) + k(8 – 5 – 2) = 0
⇒ 1 + k(8 – 7) = 0
⇒ k = – 1
So, the required equation is
(2x – 3y) – 1(4x – 5y – 2) = 0
⇒ 2x – 3y – 4x + 5y + 2 = 0
⇒ – 2x + 2y + 2 = 0
⇒ x – y – 1 = 0
(b) Equation of any line passing through the point of intersection of the line 2x – 3y = 0 and 4x – 5y = 2 is
(2x – 3y) + k(4x – 5y – 2) = 0 ......(i)
⇒ (2 + 4k)x + (– 3 – 5k)y – 2k = 0
Slope = `(-(2 + 4k))/(-3 - 5k) = (2 + 4k)/(3 + 5k)`
Slope of the given line x + 2y + 1 = 0 is `- 1/2`.
If they are perpendicular to each other then
`- 1/2((2 + 4k)/(3 + 5k)) = -1`
⇒ `(1 + 2k)/(3 + 5k)` = 1
⇒ 1 + 2k = 3 + 5k
⇒ 3k = – 2
⇒ k = `(-2)/3`
Putting the value of k is eq. (i) we get
`(2x - 3y) - 2/3 (4x - 5y - 2)` = 0
⇒ 6x – 9y – 8x + 10y + 4 = 0
⇒ – 2x + y + 4 = 0
⇒ 2x – y = 4
(c) Given equations are
2x – 3y = 0 .......(i)
4x – 5y = 2 ......(ii)
Equation of line passing through equation (i) and (ii) we get
(2x – 3y) + k(4x – 5y – 2) = 0
⇒ (2 + 4k)x + (– 3 – 5k)y – 2k = 0
Slope = `(-(2 + 4k))/(-3 - 5k) = (2 + 4k)/(3 + 5k)`
Slope of the given line 3x – 4y + 5 = 0 is `3/4`.
If the two equations are parallel, then
`(2 + 4k)/(3 + 5k) = 3/4`
⇒ 8 + 16k = 9 + 15k
⇒ 16k – 15k = 9 – 8
⇒ k = 1
So, the equation of the required line is
(2x – 3y) + 1(4x – 5y – 2) = 0
2x – 3y + 4x – 5y – 2 = 0
⇒ 6x – 8y – 2 = 0
⇒ 3x – 4y – 1 = 0
(d) Given equations are
2x – 3y = 0 ......(i)
4x – 5y – 2 = 0 ......(ii)
Equation of line passing through the intersection of equation (i) and (ii) we get
(2x – 3y) + k(4x – 5y – 2) = 0
⇒ (2 + 4k)x + (– 3 – 5k)y – 2k = 0
Slope = `(2 + 4k)/(3 + 5k)`
Since the equation is equally inclined with axes
∴ Slope = tan 135° = tan(180° – 45°)
= – tan 45° = – 1
So `(2 + 4k)/(3 + 5k) = -1`
⇒ 2 + 4k = – 3 – 5k
⇒ 4k + 5k = – 3 – 2
⇒ 9k = – 5
⇒ k = `(-5)/9`
Required equation is `(2x - 3y) - 5/9 (4x - 5y - 2)` = 0
⇒ 18x – 27y – 20x + 25y + 10 = 0
⇒ – 2x – 2y + 10 = 0
⇒ x + y – 5 = 0
APPEARS IN
संबंधित प्रश्न
Without using distance formula, show that points (–2, –1), (4, 0), (3, 3) and (–3, 2) are vertices of a parallelogram.
Find the angle between the x-axis and the line joining the points (3, –1) and (4, –2).
A line passes through (x1, y1) and (h, k). If slope of the line is m, show that k – y1 = m (h – x1).
Consider the given population and year graph. Find the slope of the line AB and using it, find what will be the population in the year 2010?
Find the slope of the lines which make the following angle with the positive direction of x-axis: \[\frac{\pi}{3}\]
Using the method of slope, show that the following points are collinear A (16, − 18), B (3, −6), C (−10, 6) .
What can be said regarding a line if its slope is zero ?
What can be said regarding a line if its slope is positive ?
Find the equation of the strainght line intersecting y-axis at a distance of 2 units above the origin and making an angle of 30° with the positive direction of the x-axis.
Find the angles between the following pair of straight lines:
(m2 − mn) y = (mn + n2) x + n3 and (mn + m2) y = (mn − n2) x + m3.
If θ is the angle which the straight line joining the points (x1, y1) and (x2, y2) subtends at the origin, prove that \[\tan \theta = \frac{x_2 y_1 - x_1 y_2}{x_1 x_2 + y_1 y_2}\text { and } \cos \theta = \frac{x_1 x_2 + y_1 y_2}{\sqrt{{x_1}^2 + {y_1}^2}\sqrt{{x_2}^2 + {y_2}^2}}\].
Show that the line a2x + ay + 1 = 0 is perpendicular to the line x − ay = 1 for all non-zero real values of a.
The equation of the line with slope −3/2 and which is concurrent with the lines 4x + 3y − 7 = 0 and 8x + 5y − 1 = 0 is
If the slopes of the lines given by the equation ax2 + 2hxy + by2 = 0 are in the ratio 5 : 3, then the ratio h2 : ab = ______.
If x + y = k is normal to y2 = 12x, then k is ______.
The line passing through (– 2, 0) and (1, 3) makes an angle of ______ with X-axis.
Find the equation of the straight line passing through (1, 2) and perpendicular to the line x + y + 7 = 0.
If the line joining two points A(2, 0) and B(3, 1) is rotated about A in anticlock wise direction through an angle of 15°. Find the equation of the line in new position.
If the slope of a line passing through the point A(3, 2) is `3/4`, then find points on the line which are 5 units away from the point A.
The two lines ax + by = c and a′x + b′y = c′ are perpendicular if ______.
The equation of the line passing through (1, 2) and perpendicular to x + y + 7 = 0 is ______.
Find the equation of the line passing through the point (5, 2) and perpendicular to the line joining the points (2, 3) and (3, – 1).
Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x-axis.
Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2).
Equation of the line passing through (1, 2) and parallel to the line y = 3x – 1 is ______.
The point (4, 1) undergoes the following two successive transformations:
(i) Reflection about the line y = x
(ii) Translation through a distance 2 units along the positive x-axis Then the final coordinates of the point are ______.
Equations of the lines through the point (3, 2) and making an angle of 45° with the line x – 2y = 3 are ______.
If the vertices of a triangle have integral coordinates, then the triangle can not be equilateral.