हिंदी

Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x-axis. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x-axis.

योग

उत्तर

Given that: OM = 4 units

∠BAX = 120°

∴ ∠BAO = 180° – 120° or ∠MAO = 60°

∠MOA + MAO = 90°    ......[∵ OM ⊥ AB]

θ + 60° = 90°

∴ θ = 30°

So, equation of AB in its normal form

x cos θ + y sin θ = p

⇒ x cos 30° + y sin 30° = 4

⇒ `x xx sqrt(3)/4 + y xx 1/2` = 4

⇒ `sqrt(3)x + y` = 8

Hence, the required equation is `sqrt(3)x + y` = 8

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Straight Lines - Exercise [पृष्ठ १७८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 10 Straight Lines
Exercise | Q 11 | पृष्ठ १७८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find a point on the x-axis, which is equidistant from the points (7, 6) and (3, 4).


Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points P (0, –4) and B (8, 0).


Find the slope of the line, which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.


Find the value of x for which the points (x, –1), (2, 1) and (4, 5) are collinear.


Consider the given population and year graph. Find the slope of the line AB and using it, find what will be the population in the year 2010?


Find the equation of the lines through the point (3, 2) which make an angle of 45° with the line x –2y = 3.


Find the slope of the lines which make the following angle with the positive direction of x-axis:

\[\frac{2\pi}{3}\]


Find the slope of the lines which make the following angle with the positive direction of x-axis: 

\[\frac{3\pi}{4}\]


Find the slope of the lines which make the following angle with the positive direction of x-axis: \[\frac{\pi}{3}\]


Find the slope of a line passing through the following point:

\[(a t_1^2 , 2 a t_1 ) \text { and } (a t_2^2 , 2 a t_2 )\]


State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (5, 6) and (2, 3); through (9, −2) and (6, −5)


Using the method of slope, show that the following points are collinear A (16, − 18), B (3, −6), C (−10, 6) .


Consider the following population and year graph:
Find the slope of the line AB and using it, find what will be the population in the year 2010.


Find the equations of the bisectors of the angles between the coordinate axes.


Find the equation of the perpendicular to the line segment joining (4, 3) and (−1, 1) if it cuts off an intercept −3 from y-axis.


Find the equations of the straight lines which cut off an intercept 5 from the y-axis and are equally inclined to the axes.


Find the equations of the altitudes of a ∆ ABC whose vertices are A (1, 4), B (−3, 2) and C (−5, −3).


Find the image of the point (3, 8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.


Find the angle between the line joining the points (2, 0), (0, 3) and the line x + y = 1.


Prove that the straight lines (a + b) x + (a − b ) y = 2ab, (a − b) x + (a + b) y = 2ab and x + y = 0 form an isosceles triangle whose vertical angle is 2 tan−1 \[\left( \frac{a}{b} \right)\].


If two opposite vertices of a square are (1, 2) and (5, 8), find the coordinates of its other two vertices and the equations of its sides.


If the slopes of the lines given by the equation ax2 + 2hxy + by2 = 0 are in the ratio 5 : 3, then the ratio h2 : ab = ______.


Find the equation to the straight line passing through the point of intersection of the lines 5x – 6y – 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x – 5y + 11 = 0.


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). Find the coordinates of the point A.


If one diagonal of a square is along the line 8x – 15y = 0 and one of its vertex is at (1, 2), then find the equation of sides of the square passing through this vertex.


P1, P2 are points on either of the two lines `- sqrt(3) |x|` = 2 at a distance of 5 units from their point of intersection. Find the coordinates of the foot of perpendiculars drawn from P1, P2 on the bisector of the angle between the given lines.


The equation of the straight line passing through the point (3, 2) and perpendicular to the line y = x is ______.


The line `x/a + y/b` = 1 moves in such a way that `1/a^2 + 1/b^2 = 1/c^2`, where c is a constant. The locus of the foot of the perpendicular from the origin on the given line is x2 + y2 = c2.


The three straight lines ax + by = c, bx + cy = a and cx + ay = b are collinear, if ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×