हिंदी

The line xa+yb = 1 moves in such a way that 1a2+1b2=1c2, where c is a constant. The locus of the foot of the perpendicular from the origin on the given line is x2 + y2 = c2. - Mathematics

Advertisements
Advertisements

प्रश्न

The line `x/a + y/b` = 1 moves in such a way that `1/a^2 + 1/b^2 = 1/c^2`, where c is a constant. The locus of the foot of the perpendicular from the origin on the given line is x2 + y2 = c2.

विकल्प

  • True

  • False

MCQ
सत्य या असत्य

उत्तर

This statement is True.

Explanation:

The given equation is `x/b - y/a` = 0   .......(i)

Equation of the line passing through (0, 0) and perpendicular to equation (i) is

`x/b - y/a` = 0  .....(ii)

Squaring and adding equation (i) and (ii) we get

`(x/a + y/b)^2 + (x/b - y/a)^2` = 1 + 0

⇒ `x^2/a^2 + y^2/b^2 + (2xy)/(ab) + x^2/b^2 + y^2/a^2 - (2xy)/(ab)` = 1

⇒ `x^2(1/a^2 + 1/b^2) + y^2(1/b^2 + 1/a^2)` = 1

⇒ `(x^2 + y^2) (1/a^2 + 1/b^2)` = 1

⇒ `(x^2 + y^2)(1/c^2)` = 1  ....`[because 1/a^2 + 1/b^2 = 1/c^2]`

⇒ x2 + y2 = c2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Straight Lines - Exercise [पृष्ठ १८४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 10 Straight Lines
Exercise | Q 54 | पृष्ठ १८४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the distance between P (x1, y1) and Q (x2, y2) when :

  1. PQ is parallel to the y-axis,
  2. PQ is parallel to the x-axis

Find the equation of a line drawn perpendicular to the line `x/4 + y/6 = 1`through the point, where it meets the y-axis.


Find the equation of the lines through the point (3, 2) which make an angle of 45° with the line x –2y = 3.


Find the slope of a line passing through the following point:

 (−3, 2) and (1, 4)


What is the value of y so that the line through (3, y)  and (2, 7) is parallel to the line through (−1, 4) and (0, 6)?


What can be said regarding a line if its slope is  zero ?


What can be said regarding a line if its slope is positive ?


If three points A (h, 0), P (a, b) and B (0, k) lie on a line, show that: \[\frac{a}{h} + \frac{b}{k} = 1\].


Consider the following population and year graph:
Find the slope of the line AB and using it, find what will be the population in the year 2010.


Find the angle between the X-axis and the line joining the points (3, −1) and (4, −2).


Find the value of x for which the points (x, −1), (2, 1) and (4, 5) are collinear.


A quadrilateral has vertices (4, 1), (1, 7), (−6, 0) and (−1, −9). Show that the mid-points of the sides of this quadrilateral form a parallelogram.


Find the equation of a straight line with slope 2 and y-intercept 3 .


Find the equations of the bisectors of the angles between the coordinate axes.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).


Find the angles between the following pair of straight lines:

3x + y + 12 = 0 and x + 2y − 1 = 0


Find the angles between the following pair of straight lines:

x − 4y = 3 and 6x − y = 11


Find the angles between the following pair of straight lines:

(m2 − mn) y = (mn + n2) x + n3 and (mn + m2) y = (mn − n2) x + m3.


Prove that the points (2, −1), (0, 2), (2, 3) and (4, 0) are the coordinates of the vertices of a parallelogram and find the angle between its diagonals.


If two opposite vertices of a square are (1, 2) and (5, 8), find the coordinates of its other two vertices and the equations of its sides.


If the slope of a line passing through the point A(3, 2) is `3/4`, then find points on the line which are 5 units away from the point A.


The two lines ax + by = c and a′x + b′y = c′ are perpendicular if ______.


The equation of the line passing through (1, 2) and perpendicular to x + y + 7 = 0 is ______.


Show that the tangent of an angle between the lines `x/a + y/b` = 1 and `x/a - y/b` = 1 is `(2ab)/(a^2 - b^2)`


Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x-axis.


Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2).


Slope of a line which cuts off intercepts of equal lengths on the axes is ______.


The point (4, 1) undergoes the following two successive transformations: 
(i) Reflection about the line y = x
(ii) Translation through a distance 2 units along the positive x-axis Then the final coordinates of the point are ______.


The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Then the other two sides are y – 3 = `(2 +- sqrt(3)) (x - 2)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×