Advertisements
Advertisements
प्रश्न
What is the value of y so that the line through (3, y) and (2, 7) is parallel to the line through (−1, 4) and (0, 6)?
उत्तर
Let m1 be the slope of the line passing through (3, y) and (2, 7) and m2 be the slope of the line passing through (−1, 4) and (0, 6).
\[\therefore m_1 = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - y}{2 - 3} = \frac{7 - y}{- 1} = y - 7\] and \[m_2 = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - 4}{0 + 1} = \frac{2}{1} = 2\]
For both the lines to be parallel, we must have,
\[m_1 = m_2 \]
\[ \Rightarrow y - 7 = 2 \]
\[ \Rightarrow y = 9\]
Hence, the value of y is 9.
APPEARS IN
संबंधित प्रश्न
The base of an equilateral triangle with side 2a lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle.
Find the distance between P (x1, y1) and Q (x2, y2) when :
- PQ is parallel to the y-axis,
- PQ is parallel to the x-axis
Find a point on the x-axis, which is equidistant from the points (7, 6) and (3, 4).
Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points P (0, –4) and B (8, 0).
Find the slope of the line, which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.
Find the angle between the x-axis and the line joining the points (3, –1) and (4, –2).
Consider the given population and year graph. Find the slope of the line AB and using it, find what will be the population in the year 2010?
Find the values of k for which the line (k–3) x – (4 – k2) y + k2 –7k + 6 = 0 is
- Parallel to the x-axis,
- Parallel to the y-axis,
- Passing through the origin.
Find the slope of the lines which make the following angle with the positive direction of x-axis:
\[- \frac{\pi}{4}\]
Find the slope of the lines which make the following angle with the positive direction of x-axis: \[\frac{\pi}{3}\]
State whether the two lines in each of the following are parallel, perpendicular or neither.
Through (5, 6) and (2, 3); through (9, −2) and (6, −5)
State whether the two lines in each of the following is parallel, perpendicular or neither.
Through (3, 15) and (16, 6); through (−5, 3) and (8, 2).
Find the slope of a line (i) which bisects the first quadrant angle (ii) which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.
What can be said regarding a line if its slope is positive ?
Show that the line joining (2, −3) and (−5, 1) is parallel to the line joining (7, −1) and (0, 3).
Without using Pythagoras theorem, show that the points A (0, 4), B (1, 2) and C (3, 3) are the vertices of a right angled triangle.
Find the value of x for which the points (x, −1), (2, 1) and (4, 5) are collinear.
Find the equation of a straight line with slope −2 and intersecting the x-axis at a distance of 3 units to the left of origin.
Find the angles between the following pair of straight lines:
3x − y + 5 = 0 and x − 3y + 1 = 0
Find the acute angle between the lines 2x − y + 3 = 0 and x + y + 2 = 0.
Show that the tangent of an angle between the lines \[\frac{x}{a} + \frac{y}{b} = 1 \text { and } \frac{x}{a} - \frac{y}{b} = 1\text { is } \frac{2ab}{a^2 - b^2}\].
The medians AD and BE of a triangle with vertices A (0, b), B (0, 0) and C (a, 0) are perpendicular to each other, if
The reflection of the point (4, −13) about the line 5x + y + 6 = 0 is
The line passing through (– 2, 0) and (1, 3) makes an angle of ______ with X-axis.
If the slope of a line passing through the point A(3, 2) is `3/4`, then find points on the line which are 5 units away from the point A.
A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). Find the coordinates of the point A.
The coordinates of the foot of the perpendicular from the point (2, 3) on the line x + y – 11 = 0 are ______.
The reflection of the point (4, – 13) about the line 5x + y + 6 = 0 is ______.
Find the equation of the line passing through the point (5, 2) and perpendicular to the line joining the points (2, 3) and (3, – 1).
Show that the tangent of an angle between the lines `x/a + y/b` = 1 and `x/a - y/b` = 1 is `(2ab)/(a^2 - b^2)`
Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2).
If p is the length of perpendicular from the origin on the line `x/a + y/b` = 1 and a2, p2, b2 are in A.P, then show that a4 + b4 = 0.
Slope of a line which cuts off intercepts of equal lengths on the axes is ______.
Equation of the line passing through (1, 2) and parallel to the line y = 3x – 1 is ______.
The points A(– 2, 1), B(0, 5), C(– 1, 2) are collinear.
The line which passes through the origin and intersect the two lines `(x - 1)/2 = (y + 3)/4 = (z - 5)/3, (x - 4)/2 = (y + 3)/3 = (z - 14)/4`, is ______.