हिंदी

The Reflection of the Point (4, −13) About the Line 5x + Y + 6 = 0 is - Mathematics

Advertisements
Advertisements

प्रश्न

The reflection of the point (4, −13) about the line 5x + y + 6 = 0 is  

विकल्प

  •  (−1, −14)

  • (3, 4)

  • (0, 0)

  • (1, 2)

MCQ

उत्तर

Let the reflection point be A(h, k)
Now, the mid point of line joining (h, k) and (4, −13)  will lie on the line 5x + y + 6 = 0

\[\therefore 5\left( \frac{h + 4}{2} \right) + \frac{k - 13}{2} + 6 = 0\]

\[ \Rightarrow 5h + 20 + k - 13 + 12 = 0\]

\[ \Rightarrow 5h + k + 19 = 0 . . . . . \left( 1 \right)\]

Now, the slope of the line joining points (h, k) and (4,−13) are perpendicular to the line 5x + y + 6 = 0.

slope of the line = −5

slope of line  joining by points (h, k) and (4,−13)

\[\frac{k + 13}{h - 4}\]

\[\therefore \frac{k + 13}{h - 4}\left( - 5 \right) = - 1\]

\[ \Rightarrow 5k - h + 69 = 0 . . . . . \left( 2 \right)\]

Solving (1) and (2), we get
h = −1 and k = −14
Hence, the correct answer is option (a).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.21 [पृष्ठ १३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.21 | Q 35 | पृष्ठ १३५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Without using the Pythagoras theorem, show that the points (4, 4), (3, 5) and (–1, –1) are the vertices of a right angled triangle.


Find the angle between the x-axis and the line joining the points (3, –1) and (4, –2).


A line passes through (x1, y1) and (h, k). If slope of the line is m, show that k – y1 = m (h – x1).


Find the values of k for which the line (k–3) x – (4 – k2) y + k2 –7k + 6 = 0 is 

  1. Parallel to the x-axis,
  2. Parallel to the y-axis,
  3. Passing through the origin.

Find the value of p so that the three lines 3x + y – 2 = 0, px + 2y – 3 = 0 and 2x – y – 3 = 0 may intersect at one point.


Find the equation of the lines through the point (3, 2) which make an angle of 45° with the line x –2y = 3.


Using the method of slope, show that the following points are collinear A (4, 8), B (5, 12), C (9, 28).


Using the method of slope, show that the following points are collinear A (16, − 18), B (3, −6), C (−10, 6) .


Show that the line joining (2, −3) and (−5, 1) is parallel to the line joining (7, −1) and (0, 3).


Show that the line joining (2, −5) and (−2, 5) is perpendicular to the line joining (6, 3) and (1, 1).


Prove that the points (−4, −1), (−2, −4), (4, 0) and (2, 3) are the vertices of a rectangle.


The slope of a line is double of the slope of another line. If tangents of the angle between them is \[\frac{1}{3}\],find the slopes of the other line.


Without using the distance formula, show that points (−2, −1), (4, 0), (3, 3) and (−3, 2) are the vertices of a parallelogram.


Find the angle between the X-axis and the line joining the points (3, −1) and (4, −2).


By using the concept of slope, show that the points (−2, −1), (4, 0), (3, 3) and (−3, 2) are the vertices of a parallelogram.


A quadrilateral has vertices (4, 1), (1, 7), (−6, 0) and (−1, −9). Show that the mid-points of the sides of this quadrilateral form a parallelogram.


Find the equation of a straight line with slope 2 and y-intercept 3 .


Find the equation of a line which is perpendicular to the line joining (4, 2) and (3, 5) and cuts off an intercept of length 3 on y-axis.


Show that the perpendicular bisectors of the sides of a triangle are concurrent.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).


Find the angles between the following pair of straight lines:

(m2 − mn) y = (mn + n2) x + n3 and (mn + m2) y = (mn − n2) x + m3.


Find the acute angle between the lines 2x − y + 3 = 0 and x + y + 2 = 0.


Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.


The angle between the lines 2x − y + 3 = 0 and x + 2y + 3 = 0 is


The coordinates of the foot of the perpendicular from the point (2, 3) on the line x + y − 11 = 0 are


Find k, if the slope of one of the lines given by kx2 + 8xy + y2 = 0 exceeds the slope of the other by 6.


If m1 and m2 are slopes of lines represented by 6x2 - 5xy + y2 = 0, then (m1)3 + (m2)3 = ?


If the slope of a line passing through the point A(3, 2) is `3/4`, then find points on the line which are 5 units away from the point A.


If one diagonal of a square is along the line 8x – 15y = 0 and one of its vertex is at (1, 2), then find the equation of sides of the square passing through this vertex.


The intercept cut off by a line from y-axis is twice than that from x-axis, and the line passes through the point (1, 2). The equation of the line is ______.


The reflection of the point (4, – 13) about the line 5x + y + 6 = 0 is ______.


The equation of the straight line passing through the point (3, 2) and perpendicular to the line y = x is ______.


The coordinates of the foot of perpendiculars from the point (2, 3) on the line y = 3x + 4 is given by ______.


Equations of the lines through the point (3, 2) and making an angle of 45° with the line x – 2y = 3 are ______.


The points (3, 4) and (2, – 6) are situated on the ______ of the line 3x – 4y – 8 = 0.


The line `x/a + y/b` = 1 moves in such a way that `1/a^2 + 1/b^2 = 1/c^2`, where c is a constant. The locus of the foot of the perpendicular from the origin on the given line is x2 + y2 = c2.


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). The co-ordinates of the point A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×