हिंदी

Using the Method of Slope, Show that the Following Point is Collinear A (4, 8), B (5, 12), C (9, 28). - Mathematics

Advertisements
Advertisements

प्रश्न

Using the method of slope, show that the following points are collinear A (4, 8), B (5, 12), C (9, 28).

संक्षेप में उत्तर

उत्तर

 A (4, 8), B (5, 12), C (9, 28)

Slope of AB = \[\frac{y_2 - y_1}{x_2 - x_1} = \frac{12 - 8}{5 - 4} = \frac{4}{1} = 4\]

Slope of BC =

\[\frac{y_2 - y_1}{x_2 - x_1} = \frac{28 - 12}{9 - 5} = \frac{16}{4} = 4\]

Since, Slope of AB = Slope of BC = 4
Therefore, the given points are collinear.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.1 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.1 | Q 5.1 | पृष्ठ १३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Draw a quadrilateral in the Cartesian plane, whose vertices are (–4, 5), (0, 7), (5, –5) and (–4, –2). Also, find its area.


Find the slope of the line, which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.


Consider the given population and year graph. Find the slope of the line AB and using it, find what will be the population in the year 2010?


Find the slope of the lines which make the following angle with the positive direction of x-axis:

\[\frac{2\pi}{3}\]


Find the slope of a line passing through the following point:

\[(a t_1^2 , 2 a t_1 ) \text { and } (a t_2^2 , 2 a t_2 )\]


Find the slope of a line passing through the following point:

(3, −5), and (1, 2)


Using the method of slope, show that the following points are collinear A (16, − 18), B (3, −6), C (−10, 6) .


Without using Pythagoras theorem, show that the points A (0, 4), B (1, 2) and C (3, 3) are the vertices of a right angled triangle.


Line through the points (−2, 6) and (4, 8) is perpendicular to the line through the points (8, 12) and (x, 24). Find the value of x. 


Find the value of x for which the points (x, −1), (2, 1) and (4, 5) are collinear.


Find the angle between X-axis and the line joining the points (3, −1) and (4, −2).


Find the equation of a straight line with slope 2 and y-intercept 3 .


Find the equation of a straight line with slope −2 and intersecting the x-axis at a distance of 3 units to the left of origin.


Show that the perpendicular bisectors of the sides of a triangle are concurrent.


If the image of the point (2, 1) with respect to a line mirror is (5, 2), find the equation of the mirror.


Find the angles between the following pair of straight lines:

3x + y + 12 = 0 and x + 2y − 1 = 0


Find the angles between the following pair of straight lines:

x − 4y = 3 and 6x − y = 11


Find the angles between the following pair of straight lines:

(m2 − mn) y = (mn + n2) x + n3 and (mn + m2) y = (mn − n2) x + m3.


Find the angle between the line joining the points (2, 0), (0, 3) and the line x + y = 1.


Show that the tangent of an angle between the lines \[\frac{x}{a} + \frac{y}{b} = 1 \text { and } \frac{x}{a} - \frac{y}{b} = 1\text {  is } \frac{2ab}{a^2 - b^2}\].


If two opposite vertices of a square are (1, 2) and (5, 8), find the coordinates of its other two vertices and the equations of its sides.


Write the coordinates of the image of the point (3, 8) in the line x + 3y − 7 = 0.


If m1 and m2 are slopes of lines represented by 6x2 - 5xy + y2 = 0, then (m1)3 + (m2)3 = ?


If x + y = k is normal to y2 = 12x, then k is ______.


If the slope of a line passing through the point A(3, 2) is `3/4`, then find points on the line which are 5 units away from the point A.


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). Find the coordinates of the point A.


If one diagonal of a square is along the line 8x – 15y = 0 and one of its vertex is at (1, 2), then find the equation of sides of the square passing through this vertex.


The two lines ax + by = c and a′x + b′y = c′ are perpendicular if ______.


Find the equation of the line passing through the point (5, 2) and perpendicular to the line joining the points (2, 3) and (3, – 1).


Show that the tangent of an angle between the lines `x/a + y/b` = 1 and `x/a - y/b` = 1 is `(2ab)/(a^2 - b^2)`


If the equation of the base of an equilateral triangle is x + y = 2 and the vertex is (2, – 1), then find the length of the side of the triangle.


The coordinates of the foot of perpendiculars from the point (2, 3) on the line y = 3x + 4 is given by ______.


Equation of the line passing through (1, 2) and parallel to the line y = 3x – 1 is ______.


If the vertices of a triangle have integral coordinates, then the triangle can not be equilateral.


The equation of the line through the intersection of the lines 2x – 3y = 0 and 4x – 5y = 2 and

Column C1 Column C2
(a) Through the point (2, 1) is (i) 2x – y = 4
(b) Perpendicular to the line (ii) x + y – 5
= 0 x + 2y + 1 = 0 is
(ii) x + y – 5 = 0
(c) Parallel to the line (iii) x – y –1 = 0
3x – 4y + 5 = 0 is
(iii) x – y –1 = 0
(d) Equally inclined to the axes is (iv) 3x – 4y – 1 = 0

The line which passes through the origin and intersect the two lines `(x - 1)/2 = (y + 3)/4 = (z - 5)/3, (x - 4)/2 = (y + 3)/3 = (z - 14)/4`, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×