हिंदी

If the vertices of a triangle have integral coordinates, then the triangle can not be equilateral. - Mathematics

Advertisements
Advertisements

प्रश्न

If the vertices of a triangle have integral coordinates, then the triangle can not be equilateral.

विकल्प

  • True

  • False

MCQ
सत्य या असत्य

उत्तर

This statement is True.

Explanation:

Let A(x1, y1), B(x2, y2) and C(x3, y3) be the vertices of a triangle ABC, where xi, yi, i = 1, 2, 3 are integers.

Then, the area of ΔABC is given by

Δ = `1/2 [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]`

= A rational number   ......[∵ xi, yi, are integers]

If possible, let the triangle ANC be an equilateral triangle

Then its area is given by

Δ = `sqrt(3)/4 ("side")^2 = sqrt(3)/4 (AB)^2`  ......[∵ AB = BC = CA]

= `sqrt(3)/4 (a  "positive integer")`   .....[∵ verticles are integral∴ AB2 is a integer]

= an irrational number

This is a contradiction to the fact that the area is a rational number.

Hence, the triangle cannot be equilateral.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Straight Lines - Exercise [पृष्ठ १८३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 10 Straight Lines
Exercise | Q 48 | पृष्ठ १८३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The base of an equilateral triangle with side 2a lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle.


Without using the Pythagoras theorem, show that the points (4, 4), (3, 5) and (–1, –1) are the vertices of a right angled triangle.


A line passes through (x1, y1) and (h, k). If slope of the line is m, show that k – y1 = m (h – x1).


Find the values of k for which the line (k–3) x – (4 – k2) y + k2 –7k + 6 = 0 is 

  1. Parallel to the x-axis,
  2. Parallel to the y-axis,
  3. Passing through the origin.

Find the equation of a line drawn perpendicular to the line `x/4 + y/6 = 1`through the point, where it meets the y-axis.


Find the slope of the lines which make the following angle with the positive direction of x-axis: \[\frac{\pi}{3}\]


If three points A (h, 0), P (a, b) and B (0, k) lie on a line, show that: \[\frac{a}{h} + \frac{b}{k} = 1\].


A quadrilateral has vertices (4, 1), (1, 7), (−6, 0) and (−1, −9). Show that the mid-points of the sides of this quadrilateral form a parallelogram.


Find the equation of a straight line  with slope − 1/3 and y-intercept − 4.


Find the equation of a straight line with slope −2 and intersecting the x-axis at a distance of 3 units to the left of origin.


Find the equation of a line which is perpendicular to the line joining (4, 2) and (3, 5) and cuts off an intercept of length 3 on y-axis.


Find the equation of the strainght line intersecting y-axis at a distance of 2 units above the origin and making an angle of 30° with the positive direction of the x-axis.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).


Find the angles between the following pair of straight lines:

3x + 4y − 7 = 0 and 4x − 3y + 5 = 0


Prove that the straight lines (a + b) x + (a − b ) y = 2ab, (a − b) x + (a + b) y = 2ab and x + y = 0 form an isosceles triangle whose vertical angle is 2 tan−1 \[\left( \frac{a}{b} \right)\].


Show that the tangent of an angle between the lines \[\frac{x}{a} + \frac{y}{b} = 1 \text { and } \frac{x}{a} - \frac{y}{b} = 1\text {  is } \frac{2ab}{a^2 - b^2}\].


If two opposite vertices of a square are (1, 2) and (5, 8), find the coordinates of its other two vertices and the equations of its sides.


The reflection of the point (4, −13) about the line 5x + y + 6 = 0 is  


Find k, if the slope of one of the lines given by kx2 + 8xy + y2 = 0 exceeds the slope of the other by 6.


If m1 and m2 are slopes of lines represented by 6x2 - 5xy + y2 = 0, then (m1)3 + (m2)3 = ?


If x + y = k is normal to y2 = 12x, then k is ______.


If the line joining two points A(2, 0) and B(3, 1) is rotated about A in anticlock wise direction through an angle of 15°. Find the equation of the line in new position.


The coordinates of the foot of perpendiculars from the point (2, 3) on the line y = 3x + 4 is given by ______.


The point (4, 1) undergoes the following two successive transformations: 
(i) Reflection about the line y = x
(ii) Translation through a distance 2 units along the positive x-axis Then the final coordinates of the point are ______.


One vertex of the equilateral triangle with centroid at the origin and one side as x + y – 2 = 0 is ______.


Equations of the lines through the point (3, 2) and making an angle of 45° with the line x – 2y = 3 are ______.


The points A(– 2, 1), B(0, 5), C(– 1, 2) are collinear.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×