Advertisements
Advertisements
प्रश्न
The points A(– 2, 1), B(0, 5), C(– 1, 2) are collinear.
विकल्प
True
False
उत्तर
This statement is False.
Explanation:
Given points are A(– 2, 1), B(0, 5), C(– 1, 2)
Area of ΔABC = `1/2|(-2, 1, 1),(0, 5, 1),(-1, 2, 1)|`
= `1/2 -2|(5, 1),(2, 1)| -1|(0, 1),(-1, 1)| + 1|(0, 5),(-1, 2)|`
= `1/2 |-2(5 - 2) - 1(0 + 1) + 1(0 + 5)|`
= `1/2 |-2 xx 3 - 1 xx 1 + 1 xx 5|`
= `1/2|-6 - 1 + 5|`
= `1/2|-2|`
= 1 sq.unit
So, the given points are not collinear.
APPEARS IN
संबंधित प्रश्न
The base of an equilateral triangle with side 2a lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle.
Find the distance between P (x1, y1) and Q (x2, y2) when :
- PQ is parallel to the y-axis,
- PQ is parallel to the x-axis
Find the slope of the line, which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.
A line passes through (x1, y1) and (h, k). If slope of the line is m, show that k – y1 = m (h – x1).
Find the slope of the lines which make the following angle with the positive direction of x-axis:
\[- \frac{\pi}{4}\]
Find the slope of a line passing through the following point:
(3, −5), and (1, 2)
Using the method of slope, show that the following points are collinear A (16, − 18), B (3, −6), C (−10, 6) .
Prove that the points (−4, −1), (−2, −4), (4, 0) and (2, 3) are the vertices of a rectangle.
Line through the points (−2, 6) and (4, 8) is perpendicular to the line through the points (8, 12) and (x, 24). Find the value of x.
Find the equation of a straight line with slope 2 and y-intercept 3 .
Find the equations of the bisectors of the angles between the coordinate axes.
Find the equation of a line which is perpendicular to the line joining (4, 2) and (3, 5) and cuts off an intercept of length 3 on y-axis.
Find the equation of the perpendicular to the line segment joining (4, 3) and (−1, 1) if it cuts off an intercept −3 from y-axis.
Find the equation of the strainght line intersecting y-axis at a distance of 2 units above the origin and making an angle of 30° with the positive direction of the x-axis.
Find the equations of the straight lines which cut off an intercept 5 from the y-axis and are equally inclined to the axes.
Find the coordinates of the orthocentre of the triangle whose vertices are (−1, 3), (2, −1) and (0, 0).
Show that the perpendicular bisectors of the sides of a triangle are concurrent.
Find the equations of the altitudes of a ∆ ABC whose vertices are A (1, 4), B (−3, 2) and C (−5, −3).
Find the angles between the following pair of straight lines:
3x − y + 5 = 0 and x − 3y + 1 = 0
Find the acute angle between the lines 2x − y + 3 = 0 and x + y + 2 = 0.
Find the angle between the line joining the points (2, 0), (0, 3) and the line x + y = 1.
Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.
The reflection of the point (4, −13) about the line 5x + y + 6 = 0 is
Find the equation of the straight line passing through (1, 2) and perpendicular to the line x + y + 7 = 0.
The equation of the line passing through (1, 2) and perpendicular to x + y + 7 = 0 is ______.
The coordinates of the foot of the perpendicular from the point (2, 3) on the line x + y – 11 = 0 are ______.
The tangent of angle between the lines whose intercepts on the axes are a, – b and b, – a, respectively, is ______.
Column C1 | Column C2 |
(a) The coordinates of the points P and Q on the line x + 5y = 13 which are at a distance of 2 units from the line 12x – 5y + 26 = 0 are |
(i) (3, 1), (–7, 11) |
(b) The coordinates of the point on the line x + y = 4, which are at a unit distance from the line 4x + 3y – 10 = 0 are |
(ii) `(- 1/3, 11/3), (4/3, 7/3)` |
(c) The coordinates of the point on the line joining A (–2, 5) and B (3, 1) such that AP = PQ = QB are |
(iii) `(1, 12/5), (-3, 16/5)` |
The line which passes through the origin and intersect the two lines `(x - 1)/2 = (y + 3)/4 = (z - 5)/3, (x - 4)/2 = (y + 3)/3 = (z - 14)/4`, is ______.