हिंदी

The points A(– 2, 1), B(0, 5), C(– 1, 2) are collinear. - Mathematics

Advertisements
Advertisements

प्रश्न

The points A(– 2, 1), B(0, 5), C(– 1, 2) are collinear.

विकल्प

  • True

  • False

MCQ
सत्य या असत्य

उत्तर

This statement is False.

Explanation:

Given points are A(– 2, 1), B(0, 5), C(– 1, 2)

Area of ΔABC = `1/2|(-2, 1, 1),(0, 5, 1),(-1, 2, 1)|`

= `1/2 -2|(5, 1),(2, 1)| -1|(0, 1),(-1, 1)| + 1|(0, 5),(-1, 2)|`

= `1/2 |-2(5 - 2) - 1(0 + 1) + 1(0 + 5)|`

= `1/2 |-2 xx 3 - 1 xx 1 + 1 xx 5|`

= `1/2|-6 - 1 + 5|`

= `1/2|-2|`

= 1 sq.unit

So, the given points are not collinear.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Straight Lines - Exercise [पृष्ठ १८३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 10 Straight Lines
Exercise | Q 49 | पृष्ठ १८३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The base of an equilateral triangle with side 2a lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle.


Find the distance between P (x1, y1) and Q (x2, y2) when :

  1. PQ is parallel to the y-axis,
  2. PQ is parallel to the x-axis

Find the slope of the line, which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.


A line passes through (x1, y1) and (h, k). If slope of the line is m, show that k – y1 = m (h – x1).


Find the slope of the lines which make the following angle with the positive direction of x-axis:

\[- \frac{\pi}{4}\]


Find the slope of a line passing through the following point:

(3, −5), and (1, 2)


Using the method of slope, show that the following points are collinear A (16, − 18), B (3, −6), C (−10, 6) .


Prove that the points (−4, −1), (−2, −4), (4, 0) and (2, 3) are the vertices of a rectangle.


Line through the points (−2, 6) and (4, 8) is perpendicular to the line through the points (8, 12) and (x, 24). Find the value of x. 


Find the equation of a straight line with slope 2 and y-intercept 3 .


Find the equations of the bisectors of the angles between the coordinate axes.


Find the equation of a line which is perpendicular to the line joining (4, 2) and (3, 5) and cuts off an intercept of length 3 on y-axis.


Find the equation of the perpendicular to the line segment joining (4, 3) and (−1, 1) if it cuts off an intercept −3 from y-axis.


Find the equation of the strainght line intersecting y-axis at a distance of 2 units above the origin and making an angle of 30° with the positive direction of the x-axis.


Find the equations of the straight lines which cut off an intercept 5 from the y-axis and are equally inclined to the axes.


Find the coordinates of the orthocentre of the triangle whose vertices are (−1, 3), (2, −1) and (0, 0).


Show that the perpendicular bisectors of the sides of a triangle are concurrent.


Find the equations of the altitudes of a ∆ ABC whose vertices are A (1, 4), B (−3, 2) and C (−5, −3).


Find the angles between the following pair of straight lines:

3x − y + 5 = 0 and x − 3y + 1 = 0


Find the acute angle between the lines 2x − y + 3 = 0 and x + y + 2 = 0.


Find the angle between the line joining the points (2, 0), (0, 3) and the line x + y = 1.


Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.


The reflection of the point (4, −13) about the line 5x + y + 6 = 0 is  


Find the equation of the straight line passing through (1, 2) and perpendicular to the line x + y + 7 = 0.


The equation of the line passing through (1, 2) and perpendicular to x + y + 7 = 0 is ______.


The coordinates of the foot of the perpendicular from the point (2, 3) on the line x + y – 11 = 0 are ______.


The tangent of angle between the lines whose intercepts on the axes are a, – b and b, – a, respectively, is ______.


Column C1 Column C2
(a) The coordinates of the points
P and Q on the line x + 5y = 13 which
are at a distance of 2 units from the
line 12x – 5y + 26 = 0 are
(i) (3, 1), (–7, 11)
(b) The coordinates of the point on
the line x + y = 4, which are at a  unit
distance from the line 4x + 3y – 10 = 0 are
(ii) `(- 1/3, 11/3), (4/3, 7/3)`
(c) The coordinates of the point on the line
joining A (–2, 5) and B (3, 1) such that
AP = PQ = QB are
(iii) `(1, 12/5), (-3, 16/5)`

The line which passes through the origin and intersect the two lines `(x - 1)/2 = (y + 3)/4 = (z - 5)/3, (x - 4)/2 = (y + 3)/3 = (z - 14)/4`, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×