हिंदी

The equation of the line passing through (1, 2) and perpendicular to x + y + 7 = 0 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The equation of the line passing through (1, 2) and perpendicular to x + y + 7 = 0 is ______.

विकल्प

  • y – x + 1 = 0

  • y – x – 1 = 0

  • y – x + 2 = 0

  • y – x – 2 = 0.

MCQ
रिक्त स्थान भरें

उत्तर

The equation of the line passing through (1, 2) and perpendicular to x + y + 7 = 0 is y – x – 1 = 0.

Explanation:

. Let the slope of the line be m.

Then, its equation passing through (1, 2) is given by

y – 2 = m(x – 1)  ....(1)

Again, this line is perpendicular to the given line x + y + 7 = 0 whose slope is – 1 (Why?)

Therefore, we have m ( – 1) = – 1

or m = 1

Hence, the required equation of the line is obtained by putting the value of m in (1)

i.e., y – 2 = x – 1

or y – x – 1 = 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Straight Lines - Solved Examples [पृष्ठ १७४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 10 Straight Lines
Solved Examples | Q 14 | पृष्ठ १७४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find a point on the x-axis, which is equidistant from the points (7, 6) and (3, 4).


Without using distance formula, show that points (–2, –1), (4, 0), (3, 3) and (–3, 2) are vertices of a parallelogram.


Consider the given population and year graph. Find the slope of the line AB and using it, find what will be the population in the year 2010?


Find the equation of a line drawn perpendicular to the line `x/4 + y/6 = 1`through the point, where it meets the y-axis.


Find the slope of a line passing through the following point:

\[(a t_1^2 , 2 a t_1 ) \text { and } (a t_2^2 , 2 a t_2 )\]


State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (5, 6) and (2, 3); through (9, −2) and (6, −5)


Using the method of slope, show that the following points are collinear A (4, 8), B (5, 12), C (9, 28).


Show that the line joining (2, −5) and (−2, 5) is perpendicular to the line joining (6, 3) and (1, 1).


A quadrilateral has vertices (4, 1), (1, 7), (−6, 0) and (−1, −9). Show that the mid-points of the sides of this quadrilateral form a parallelogram.


Find the equations of the bisectors of the angles between the coordinate axes.


Find the equation of a line which is perpendicular to the line joining (4, 2) and (3, 5) and cuts off an intercept of length 3 on y-axis.


Find the angles between the following pair of straight lines:

x − 4y = 3 and 6x − y = 11


Find the acute angle between the lines 2x − y + 3 = 0 and x + y + 2 = 0.


Prove that the points (2, −1), (0, 2), (2, 3) and (4, 0) are the coordinates of the vertices of a parallelogram and find the angle between its diagonals.


If θ is the angle which the straight line joining the points (x1, y1) and (x2, y2) subtends at the origin, prove that  \[\tan \theta = \frac{x_2 y_1 - x_1 y_2}{x_1 x_2 + y_1 y_2}\text { and } \cos \theta = \frac{x_1 x_2 + y_1 y_2}{\sqrt{{x_1}^2 + {y_1}^2}\sqrt{{x_2}^2 + {y_2}^2}}\].


Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.


If two opposite vertices of a square are (1, 2) and (5, 8), find the coordinates of its other two vertices and the equations of its sides.


The angle between the lines 2x − y + 3 = 0 and x + 2y + 3 = 0 is


The medians AD and BE of a triangle with vertices A (0, b), B (0, 0) and C (a, 0) are perpendicular to each other, if


If the slopes of the lines given by the equation ax2 + 2hxy + by2 = 0 are in the ratio 5 : 3, then the ratio h2 : ab = ______.


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). Find the coordinates of the point A.


The coordinates of the foot of perpendiculars from the point (2, 3) on the line y = 3x + 4 is given by ______.


Equation of the line passing through (1, 2) and parallel to the line y = 3x – 1 is ______.


The points (3, 4) and (2, – 6) are situated on the ______ of the line 3x – 4y – 8 = 0.


If the vertices of a triangle have integral coordinates, then the triangle can not be equilateral.


The three straight lines ax + by = c, bx + cy = a and cx + ay = b are collinear, if ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×