हिंदी

The Medians Ad and Be of a Triangle with Vertices a (0, B), B (0, 0) and C (A, 0) Are Perpendicular to Each Other, If - Mathematics

Advertisements
Advertisements

प्रश्न

The medians AD and BE of a triangle with vertices A (0, b), B (0, 0) and C (a, 0) are perpendicular to each other, if

विकल्प

  • \[a = \frac{b}{2}\]

  • \[b = \frac{a}{2}\]

  • ab = 1

  • \[a = \pm \sqrt{2}b\]

MCQ

उत्तर

\[a = \pm \sqrt{2}b\]

The midpoints of BC and AC are \[D\left( \frac{a}{2}, 0 \right) \text { and } E\left( \frac{a}{2}, \frac{b}{2} \right)\]. 

Slope of AD= \[\frac{0 - b}{\frac{a}{2} - 0}\]

Slope of BE = \[\frac{- \frac{b}{2}}{\frac{- a}{2}}\]

It is given that the medians are perpendicular to each other.

\[\frac{0 - b}{\frac{a}{2} - 0} \times \frac{- \frac{b}{2}}{- \frac{a}{2}} = - 1\]

\[ \Rightarrow a = \pm \sqrt{2}b\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.21 [पृष्ठ १३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.21 | Q 29 | पृष्ठ १३५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Without using the Pythagoras theorem, show that the points (4, 4), (3, 5) and (–1, –1) are the vertices of a right angled triangle.


Find the slope of the line, which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.


Find the angle between the x-axis and the line joining the points (3, –1) and (4, –2).


A line passes through (x1, y1) and (h, k). If slope of the line is m, show that k – y1 = m (h – x1).


If three point (h, 0), (a, b) and (0, k) lie on a line, show that `q/h + b/k = 1`


Find the values of k for which the line (k–3) x – (4 – k2) y + k2 –7k + 6 = 0 is 

  1. Parallel to the x-axis,
  2. Parallel to the y-axis,
  3. Passing through the origin.

State whether the two lines in each of the following is parallel, perpendicular or neither.

Through (3, 15) and (16, 6); through (−5, 3) and (8, 2).


Using the method of slope, show that the following points are collinear A (4, 8), B (5, 12), C (9, 28).


What can be said regarding a line if its slope is negative?


If three points A (h, 0), P (a, b) and B (0, k) lie on a line, show that: \[\frac{a}{h} + \frac{b}{k} = 1\].


Without using the distance formula, show that points (−2, −1), (4, 0), (3, 3) and (−3, 2) are the vertices of a parallelogram.


Find the value of x for which the points (x, −1), (2, 1) and (4, 5) are collinear.


By using the concept of slope, show that the points (−2, −1), (4, 0), (3, 3) and (−3, 2) are the vertices of a parallelogram.


A quadrilateral has vertices (4, 1), (1, 7), (−6, 0) and (−1, −9). Show that the mid-points of the sides of this quadrilateral form a parallelogram.


Find the equations of the bisectors of the angles between the coordinate axes.


Find the equation of the strainght line intersecting y-axis at a distance of 2 units above the origin and making an angle of 30° with the positive direction of the x-axis.


Find the equations of the straight lines which cut off an intercept 5 from the y-axis and are equally inclined to the axes.


Find the angles between the following pair of straight lines:

x − 4y = 3 and 6x − y = 11


Find the acute angle between the lines 2x − y + 3 = 0 and x + y + 2 = 0.


Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.


If two opposite vertices of a square are (1, 2) and (5, 8), find the coordinates of its other two vertices and the equations of its sides.


The acute angle between the medians drawn from the acute angles of a right angled isosceles triangle is 


If m1 and m2 are slopes of lines represented by 6x2 - 5xy + y2 = 0, then (m1)3 + (m2)3 = ?


If the slopes of the lines given by the equation ax2 + 2hxy + by2 = 0 are in the ratio 5 : 3, then the ratio h2 : ab = ______.


The equation of a line passing through the point (7, - 4) and perpendicular to the line passing through the points (2, 3) and (1 , - 2 ) is ______.


The line passing through (– 2, 0) and (1, 3) makes an angle of ______ with X-axis.


If the slope of a line passing through the point A(3, 2) is `3/4`, then find points on the line which are 5 units away from the point A.


If one diagonal of a square is along the line 8x – 15y = 0 and one of its vertex is at (1, 2), then find the equation of sides of the square passing through this vertex.


Show that the tangent of an angle between the lines `x/a + y/b` = 1 and `x/a - y/b` = 1 is `(2ab)/(a^2 - b^2)`


Equations of diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y = 1 are ______.


The points A(– 2, 1), B(0, 5), C(– 1, 2) are collinear.


Line joining the points (3, – 4) and (– 2, 6) is perpendicular to the line joining the points (–3, 6) and (9, –18).


The line which passes through the origin and intersect the two lines `(x - 1)/2 = (y + 3)/4 = (z - 5)/3, (x - 4)/2 = (y + 3)/3 = (z - 14)/4`, is ______.


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). The co-ordinates of the point A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×