हिंदी

If Two Opposite Vertices of a Square Are (1, 2) and (5, 8), Find the Coordinates of Its Other Two Vertices and the Equations of Its Sides. - Mathematics

Advertisements
Advertisements

प्रश्न

If two opposite vertices of a square are (1, 2) and (5, 8), find the coordinates of its other two vertices and the equations of its sides.

संक्षेप में उत्तर

उत्तर

Slope of AC = 8251=32

The sides AB and AD pass through the point A(1,2) and make an angle of 45 with AC whose slope is 32.

Equations of AB and AD are given by y2=32±tan45132tan45(x1)

y2=3±223(x1)

y2=5(x1) and y2=15(x1)

5x+y7=0 and x5y+9=0

Thus, the equations of AB and AD are 5x+y7=0 and x5y+9=0  respectively.

Since BC is parallel to AD, the equation of BC is x5y+λ=0.

This line passes through C (5,8).

540+λ=0λ=35

So, the equation of BC is x5y+35=0.

Since CD is parallel to AB, the equation of CD is 5x+y+λ=0.

This line passes through C (5, 8).

25+8+λ=0λ=33

So, the equation of CD is 5x+y33=0.

Solving equation of AB and BC, we get B as (0, 7).
Solving equation of AD and CD, we get D as (6, 3).
Hence, the other two vertices are (0, 7) and (6, 3).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.18 [पृष्ठ १२५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.18 | Q 13 | पृष्ठ १२५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The base of an equilateral triangle with side 2a lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle.


Find a point on the x-axis, which is equidistant from the points (7, 6) and (3, 4).


Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points P (0, –4) and B (8, 0).


Find the slope of the line, which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.


Find the values of k for which the line (k–3) x – (4 – k2) y + k2 –7k + 6 = 0 is 

  1. Parallel to the x-axis,
  2. Parallel to the y-axis,
  3. Passing through the origin.

Find the slope of a line passing through the following point:

(3, −5), and (1, 2)


State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (5, 6) and (2, 3); through (9, −2) and (6, −5)


Find the slope of a line (i) which bisects the first quadrant angle (ii) which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.


Show that the line joining (2, −3) and (−5, 1) is parallel to the line joining (7, −1) and (0, 3).


The slope of a line is double of the slope of another line. If tangents of the angle between them is 13,find the slopes of the other line.


Without using the distance formula, show that points (−2, −1), (4, 0), (3, 3) and (−3, 2) are the vertices of a parallelogram.


By using the concept of slope, show that the points (−2, −1), (4, 0), (3, 3) and (−3, 2) are the vertices of a parallelogram.


Find the equation of the perpendicular to the line segment joining (4, 3) and (−1, 1) if it cuts off an intercept −3 from y-axis.


Find the equation of the strainght line intersecting y-axis at a distance of 2 units above the origin and making an angle of 30° with the positive direction of the x-axis.


Find the equations of the straight lines which cut off an intercept 5 from the y-axis and are equally inclined to the axes.


Show that the perpendicular bisectors of the sides of a triangle are concurrent.


Find the equations of the altitudes of a ∆ ABC whose vertices are A (1, 4), B (−3, 2) and C (−5, −3).


Find the image of the point (3, 8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.


Find the angles between the following pair of straight lines:

3x + 4y − 7 = 0 and 4x − 3y + 5 = 0


Find the angles between the following pair of straight lines:

x − 4y = 3 and 6x − y = 11


Prove that the straight lines (a + b) x + (a − b ) y = 2ab, (a − b) x + (a + b) y = 2ab and x + y = 0 form an isosceles triangle whose vertical angle is 2 tan−1 (ab).


Show that the line a2x + ay + 1 = 0 is perpendicular to the line x − ay = 1 for all non-zero real values of a.


The acute angle between the medians drawn from the acute angles of a right angled isosceles triangle is 


The medians AD and BE of a triangle with vertices A (0, b), B (0, 0) and C (a, 0) are perpendicular to each other, if


If m1 and m2 are slopes of lines represented by 6x2 - 5xy + y2 = 0, then (m1)3 + (m2)3 = ?


The equation of a line passing through the point (7, - 4) and perpendicular to the line passing through the points (2, 3) and (1 , - 2 ) is ______.


If x + y = k is normal to y2 = 12x, then k is ______.


Find the equation of the straight line passing through (1, 2) and perpendicular to the line x + y + 7 = 0.


If the slope of a line passing through the point A(3, 2) is 34, then find points on the line which are 5 units away from the point A.


If one diagonal of a square is along the line 8x – 15y = 0 and one of its vertex is at (1, 2), then find the equation of sides of the square passing through this vertex.


The two lines ax + by = c and a′x + b′y = c′ are perpendicular if ______.


Find the equation of the line passing through the point (5, 2) and perpendicular to the line joining the points (2, 3) and (3, – 1).


A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from the points (2, 0), (0, 2) and (1, 1) on the line is zero. Find the coordinates of the point P.


Equations of diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y = 1 are ______.


The point (4, 1) undergoes the following two successive transformations: 
(i) Reflection about the line y = x
(ii) Translation through a distance 2 units along the positive x-axis Then the final coordinates of the point are ______.


The points (3, 4) and (2, – 6) are situated on the ______ of the line 3x – 4y – 8 = 0.


The points A(– 2, 1), B(0, 5), C(– 1, 2) are collinear.


The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Then the other two sides are y – 3 = (2±3)(x-2).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.