Advertisements
Advertisements
प्रश्न
If two opposite vertices of a square are (1, 2) and (5, 8), find the coordinates of its other two vertices and the equations of its sides.
उत्तर
Slope of AC = \[\frac{8 - 2}{5 - 1} = \frac{3}{2}\]
The sides AB and AD pass through the point A(1,2) and make an angle of \[{45}^\circ\] with AC whose slope is \[\frac{3}{2}\].
Equations of AB and AD are given by \[y - 2 = \frac{\frac{3}{2} \pm \tan {45}^\circ}{1 \mp \frac{3}{2}\tan {45}^\circ}\left( x - 1 \right)\]
\[\Rightarrow y - 2 = \frac{3 \pm 2}{2 \mp 3}\left( x - 1 \right)\]
\[\Rightarrow y - 2 = - 5\left( x - 1 \right) \text { and } y - 2 = \frac{1}{5}\left( x - 1 \right)\]
\[ \Rightarrow 5x + y - 7 = 0 \text { and } x - 5y + 9 = 0\]
Thus, the equations of AB and AD are \[5x + y - 7 = 0 \text { and } x - 5y + 9 = 0\] respectively.
Since BC is parallel to AD, the equation of BC is \[x - 5y + \lambda = 0\].
This line passes through C (5,8).
\[5 - 40 + \lambda = 0 \Rightarrow \lambda = 35\]
So, the equation of BC is \[x - 5y + 35 = 0\].
Since CD is parallel to AB, the equation of CD is \[5x + y + \lambda = 0\].
This line passes through C (5, 8).
\[25 + 8 + \lambda = 0 \Rightarrow \lambda = - 33\]
So, the equation of CD is \[5x + y - 33 = 0\].
Solving equation of AB and BC, we get B as (0, 7).
Solving equation of AD and CD, we get D as (6, 3).
Hence, the other two vertices are (0, 7) and (6, 3).
APPEARS IN
संबंधित प्रश्न
Find the distance between P (x1, y1) and Q (x2, y2) when :
- PQ is parallel to the y-axis,
- PQ is parallel to the x-axis
Consider the given population and year graph. Find the slope of the line AB and using it, find what will be the population in the year 2010?
Find the equation of the lines through the point (3, 2) which make an angle of 45° with the line x –2y = 3.
Find the slope of the lines which make the following angle with the positive direction of x-axis:
\[\frac{2\pi}{3}\]
Find the slope of the lines which make the following angle with the positive direction of x-axis:
\[\frac{3\pi}{4}\]
Find the slope of the lines which make the following angle with the positive direction of x-axis: \[\frac{\pi}{3}\]
Find the slope of a line passing through the following point:
(−3, 2) and (1, 4)
Find the slope of a line passing through the following point:
\[(a t_1^2 , 2 a t_1 ) \text { and } (a t_2^2 , 2 a t_2 )\]
What is the value of y so that the line through (3, y) and (2, 7) is parallel to the line through (−1, 4) and (0, 6)?
What can be said regarding a line if its slope is zero ?
What can be said regarding a line if its slope is positive ?
Show that the line joining (2, −3) and (−5, 1) is parallel to the line joining (7, −1) and (0, 3).
The slope of a line is double of the slope of another line. If tangents of the angle between them is \[\frac{1}{3}\],find the slopes of the other line.
Find the angle between X-axis and the line joining the points (3, −1) and (4, −2).
Find the equations of the straight lines which cut off an intercept 5 from the y-axis and are equally inclined to the axes.
Find the coordinates of the orthocentre of the triangle whose vertices are (−1, 3), (2, −1) and (0, 0).
Find the angles between the following pair of straight lines:
3x + 4y − 7 = 0 and 4x − 3y + 5 = 0
Find the acute angle between the lines 2x − y + 3 = 0 and x + y + 2 = 0.
Prove that the points (2, −1), (0, 2), (2, 3) and (4, 0) are the coordinates of the vertices of a parallelogram and find the angle between its diagonals.
Show that the tangent of an angle between the lines \[\frac{x}{a} + \frac{y}{b} = 1 \text { and } \frac{x}{a} - \frac{y}{b} = 1\text { is } \frac{2ab}{a^2 - b^2}\].
The acute angle between the medians drawn from the acute angles of a right angled isosceles triangle is
The line passing through (– 2, 0) and (1, 3) makes an angle of ______ with X-axis.
A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). Find the coordinates of the point A.
The reflection of the point (4, – 13) about the line 5x + y + 6 = 0 is ______.
Find the angle between the lines y = `(2 - sqrt(3)) (x + 5)` and y = `(2 + sqrt(3))(x - 7)`
Show that the tangent of an angle between the lines `x/a + y/b` = 1 and `x/a - y/b` = 1 is `(2ab)/(a^2 - b^2)`
Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2).
Equation of the line passing through (1, 2) and parallel to the line y = 3x – 1 is ______.
Equations of diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y = 1 are ______.
The point (4, 1) undergoes the following two successive transformations:
(i) Reflection about the line y = x
(ii) Translation through a distance 2 units along the positive x-axis Then the final coordinates of the point are ______.
One vertex of the equilateral triangle with centroid at the origin and one side as x + y – 2 = 0 is ______.
The points (3, 4) and (2, – 6) are situated on the ______ of the line 3x – 4y – 8 = 0.
If the vertices of a triangle have integral coordinates, then the triangle can not be equilateral.
Column C1 | Column C2 |
(a) The coordinates of the points P and Q on the line x + 5y = 13 which are at a distance of 2 units from the line 12x – 5y + 26 = 0 are |
(i) (3, 1), (–7, 11) |
(b) The coordinates of the point on the line x + y = 4, which are at a unit distance from the line 4x + 3y – 10 = 0 are |
(ii) `(- 1/3, 11/3), (4/3, 7/3)` |
(c) The coordinates of the point on the line joining A (–2, 5) and B (3, 1) such that AP = PQ = QB are |
(iii) `(1, 12/5), (-3, 16/5)` |
The equation of the line through the intersection of the lines 2x – 3y = 0 and 4x – 5y = 2 and
Column C1 | Column C2 |
(a) Through the point (2, 1) is | (i) 2x – y = 4 |
(b) Perpendicular to the line (ii) x + y – 5 = 0 x + 2y + 1 = 0 is |
(ii) x + y – 5 = 0 |
(c) Parallel to the line (iii) x – y –1 = 0 3x – 4y + 5 = 0 is |
(iii) x – y –1 = 0 |
(d) Equally inclined to the axes is | (iv) 3x – 4y – 1 = 0 |