मराठी

Find the Coordinates of the Orthocentre of the Triangle Whose Vertices Are (−1, 3), (2, −1) and (0, 0). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the coordinates of the orthocentre of the triangle whose vertices are (−1, 3), (2, −1) and (0, 0).

थोडक्यात उत्तर

उत्तर

Let A (0, 0), B (−1, 3) and C (2, −1) be the vertices of the triangle ABC. 
Let AD and BE be the altitudes.

\[AD \perp BC\] and \[BE \perp AC\]

\[\therefore\] Slope of AD \[\times\] Slope of BC = −1
Slope of BE \[\times\] Slope of AC = −1
Here, slope of BC = \[\frac{- 1 - 3}{2 + 1} = - \frac{4}{3}\]  and slope of AC = \[\frac{- 1 - 0}{2 - 0} = - \frac{1}{2}\]

\[\therefore \text { Slope of AD } \times \left( - \frac{4}{3} \right) = - \text { 1 and slope of BE } \times \left( - \frac{1}{2} \right) = - 1 \]

\[ \Rightarrow \text { Slope of AD } = \frac{3}{4}\text { and slope of BE } = 2\]

The equation of the altitude AD passing through A (0, 0) and having slope \[\frac{3}{4}\] is

\[y - 0 = \frac{3}{4}\left( x - 0 \right)\]

\[ \Rightarrow y = \frac{3}{4}x . . . . (1)\]

The equation of the altitude BE passing through B (−1, 3) and having slope 2 is

\[y - 3 = 2\left( x + 1 \right)\]

\[ \Rightarrow 2x - y + 5 = 0 . . . . (2)\]

Solving (1) and (2):
x = − 4, y = − 3
Hence, the coordinates of the orthocentre is (−4, −3).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.1 [पृष्ठ ७८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.1 | Q 13 | पृष्ठ ७८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find a point on the x-axis, which is equidistant from the points (7, 6) and (3, 4).


Find the slope of the line, which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.


Without using distance formula, show that points (–2, –1), (4, 0), (3, 3) and (–3, 2) are vertices of a parallelogram.


Consider the given population and year graph. Find the slope of the line AB and using it, find what will be the population in the year 2010?


Find the values of k for which the line (k–3) x – (4 – k2) y + k2 –7k + 6 = 0 is 

  1. Parallel to the x-axis,
  2. Parallel to the y-axis,
  3. Passing through the origin.

Find the equation of a line drawn perpendicular to the line `x/4 + y/6 = 1`through the point, where it meets the y-axis.


Find the slope of the lines which make the following angle with the positive direction of x-axis:

\[\frac{2\pi}{3}\]


Find the slope of the lines which make the following angle with the positive direction of x-axis: 

\[\frac{3\pi}{4}\]


Find the slope of a line passing through the following point:

\[(a t_1^2 , 2 a t_1 ) \text { and } (a t_2^2 , 2 a t_2 )\]


State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (9, 5) and (−1, 1); through (3, −5) and (8, −3)


Using the method of slope, show that the following points are collinear A (16, − 18), B (3, −6), C (−10, 6) .


What can be said regarding a line if its slope is  zero ?


Show that the line joining (2, −3) and (−5, 1) is parallel to the line joining (7, −1) and (0, 3).


Without using Pythagoras theorem, show that the points A (0, 4), B (1, 2) and C (3, 3) are the vertices of a right angled triangle.


Prove that the points (−4, −1), (−2, −4), (4, 0) and (2, 3) are the vertices of a rectangle.


If three points A (h, 0), P (a, b) and B (0, k) lie on a line, show that: \[\frac{a}{h} + \frac{b}{k} = 1\].


Consider the following population and year graph:
Find the slope of the line AB and using it, find what will be the population in the year 2010.


Find the angle between the X-axis and the line joining the points (3, −1) and (4, −2).


Find the equation of a straight line with slope 2 and y-intercept 3 .


Find the equation of the perpendicular to the line segment joining (4, 3) and (−1, 1) if it cuts off an intercept −3 from y-axis.


Find the equation of the strainght line intersecting y-axis at a distance of 2 units above the origin and making an angle of 30° with the positive direction of the x-axis.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).


Find the angle between the line joining the points (2, 0), (0, 3) and the line x + y = 1.


Prove that the straight lines (a + b) x + (a − b ) y = 2ab, (a − b) x + (a + b) y = 2ab and x + y = 0 form an isosceles triangle whose vertical angle is 2 tan−1 \[\left( \frac{a}{b} \right)\].


The equation of the line with slope −3/2 and which is concurrent with the lines 4x + 3y − 7 = 0 and 8x + 5y − 1 = 0 is


If m1 and m2 are slopes of lines represented by 6x2 - 5xy + y2 = 0, then (m1)3 + (m2)3 = ?


Find the equation of the straight line passing through (1, 2) and perpendicular to the line x + y + 7 = 0.


The equation of the line passing through (1, 2) and perpendicular to x + y + 7 = 0 is ______.


Find the angle between the lines y = `(2 - sqrt(3)) (x + 5)` and y = `(2 + sqrt(3))(x - 7)`


Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x-axis.


Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2).


The coordinates of the foot of perpendiculars from the point (2, 3) on the line y = 3x + 4 is given by ______.


Equations of diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y = 1 are ______.


The point (4, 1) undergoes the following two successive transformations: 
(i) Reflection about the line y = x
(ii) Translation through a distance 2 units along the positive x-axis Then the final coordinates of the point are ______.


One vertex of the equilateral triangle with centroid at the origin and one side as x + y – 2 = 0 is ______.


The points A(– 2, 1), B(0, 5), C(– 1, 2) are collinear.


Line joining the points (3, – 4) and (– 2, 6) is perpendicular to the line joining the points (–3, 6) and (9, –18).


Column C1 Column C2
(a) The coordinates of the points
P and Q on the line x + 5y = 13 which
are at a distance of 2 units from the
line 12x – 5y + 26 = 0 are
(i) (3, 1), (–7, 11)
(b) The coordinates of the point on
the line x + y = 4, which are at a  unit
distance from the line 4x + 3y – 10 = 0 are
(ii) `(- 1/3, 11/3), (4/3, 7/3)`
(c) The coordinates of the point on the line
joining A (–2, 5) and B (3, 1) such that
AP = PQ = QB are
(iii) `(1, 12/5), (-3, 16/5)`

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×