मराठी

Find the Slope of the Lines Which Make the Following Angle with the Positive Direction of X-axis: 2 π 3 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the slope of the lines which make the following angle with the positive direction of x-axis:

\[\frac{2\pi}{3}\]

थोडक्यात उत्तर

उत्तर

\[\theta = \frac{2\pi}{3}\]

\[\therefore \text { Slope of the line } = m = \tan\theta\]

\[ \Rightarrow \text { Slope of the line }= \tan\left( \frac{2\pi}{3} \right) = - \tan\left( \frac{\pi}{3} \right) = - \sqrt{3}\]

Hence, the slope of the line is \[- \sqrt{3}\].

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.1 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.1 | Q 1.2 | पृष्ठ १२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the slope of the line, which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.


Find the value of x for which the points (x, –1), (2, 1) and (4, 5) are collinear.


Find the angle between the x-axis and the line joining the points (3, –1) and (4, –2).


If three point (h, 0), (a, b) and (0, k) lie on a line, show that `q/h + b/k = 1`


Find the equation of a line drawn perpendicular to the line `x/4 + y/6 = 1`through the point, where it meets the y-axis.


Find the slope of the lines which make the following angle with the positive direction of x-axis: \[\frac{\pi}{3}\]


Find the slope of a line (i) which bisects the first quadrant angle (ii) which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.


Show that the line joining (2, −3) and (−5, 1) is parallel to the line joining (7, −1) and (0, 3).


Without using Pythagoras theorem, show that the points A (0, 4), B (1, 2) and C (3, 3) are the vertices of a right angled triangle.


Consider the following population and year graph:
Find the slope of the line AB and using it, find what will be the population in the year 2010.


Line through the points (−2, 6) and (4, 8) is perpendicular to the line through the points (8, 12) and (x, 24). Find the value of x. 


Find the equation of a straight line with slope −2 and intersecting the x-axis at a distance of 3 units to the left of origin.


Find the equations of the altitudes of a ∆ ABC whose vertices are A (1, 4), B (−3, 2) and C (−5, −3).


If the image of the point (2, 1) with respect to a line mirror is (5, 2), find the equation of the mirror.


Find the image of the point (3, 8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.


Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.


Show that the tangent of an angle between the lines \[\frac{x}{a} + \frac{y}{b} = 1 \text { and } \frac{x}{a} - \frac{y}{b} = 1\text {  is } \frac{2ab}{a^2 - b^2}\].


The angle between the lines 2x − y + 3 = 0 and x + 2y + 3 = 0 is


Find k, if the slope of one of the lines given by kx2 + 8xy + y2 = 0 exceeds the slope of the other by 6.


Point of the curve y2 = 3(x – 2) at which the normal is parallel to the line 2y + 4x + 5 = 0 is ______.


The line passing through (– 2, 0) and (1, 3) makes an angle of ______ with X-axis.


If the line joining two points A(2, 0) and B(3, 1) is rotated about A in anticlock wise direction through an angle of 15°. Find the equation of the line in new position.


The reflection of the point (4, – 13) about the line 5x + y + 6 = 0 is ______.


Find the angle between the lines y = `(2 - sqrt(3)) (x + 5)` and y = `(2 + sqrt(3))(x - 7)`


Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x-axis.


A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from the points (2, 0), (0, 2) and (1, 1) on the line is zero. Find the coordinates of the point P.


If p is the length of perpendicular from the origin on the line `x/a + y/b` = 1 and a2, p2, b2 are in A.P, then show that a4 + b4 = 0.


Equations of the lines through the point (3, 2) and making an angle of 45° with the line x – 2y = 3 are ______.


The points A(– 2, 1), B(0, 5), C(– 1, 2) are collinear.


The line `x/a + y/b` = 1 moves in such a way that `1/a^2 + 1/b^2 = 1/c^2`, where c is a constant. The locus of the foot of the perpendicular from the origin on the given line is x2 + y2 = c2.


The line which passes through the origin and intersect the two lines `(x - 1)/2 = (y + 3)/4 = (z - 5)/3, (x - 4)/2 = (y + 3)/3 = (z - 14)/4`, is ______.


If the line joining two points A (2, 0) and B (3, 1) is rotated about A in anticlockwise direction through an angle of 15°, then the equation of the line in new position is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×