मराठी

If the Image of the Point (2, 1) with Respect to a Line Mirror is (5, 2), Find the Equation of the Mirror. - Mathematics

Advertisements
Advertisements

प्रश्न

If the image of the point (2, 1) with respect to a line mirror is (5, 2), find the equation of the mirror.

थोडक्यात उत्तर

उत्तर

Let the image of A (2, 1) be B (5, 2). Also, let M be the midpoint of AB.

\[\therefore \text { Coordinates of } M = \left( \frac{2 + 5}{2}, \frac{1 + 2}{2} \right)\]

\[ = \left( \frac{7}{2}, \frac{3}{2} \right)\]

Let CD be the mirror.
Line AB is perpendicular to the mirror CD.

\[\therefore\]  Slope of AB \[\times\] Slope of CD = −1

\[\Rightarrow \frac{2 - 1}{5 - 2} \times \text { Slope of CD } = - 1\]

\[ \Rightarrow \text { Slope of CD }= - 3\]

Equation of the mirror CD:

\[y - \frac{3}{2} = - 3\left( x - \frac{7}{2} \right)\]

\[ \Rightarrow 2y - 3 = - 6x + 21\]

\[ \Rightarrow 6x + 2y - 24 = 0\]

\[ \Rightarrow 3x + y - 12 = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.12 [पृष्ठ ९२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.12 | Q 6 | पृष्ठ ९२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The base of an equilateral triangle with side 2a lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle.


Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points P (0, –4) and B (8, 0).


Without using distance formula, show that points (–2, –1), (4, 0), (3, 3) and (–3, 2) are vertices of a parallelogram.


Find the angle between the x-axis and the line joining the points (3, –1) and (4, –2).


If three point (h, 0), (a, b) and (0, k) lie on a line, show that `q/h + b/k = 1`


Consider the given population and year graph. Find the slope of the line AB and using it, find what will be the population in the year 2010?


Find the values of k for which the line (k–3) x – (4 – k2) y + k2 –7k + 6 = 0 is 

  1. Parallel to the x-axis,
  2. Parallel to the y-axis,
  3. Passing through the origin.

Find the slope of the lines which make the following angle with the positive direction of x-axis: 

\[\frac{3\pi}{4}\]


Find the slope of the lines which make the following angle with the positive direction of x-axis: \[\frac{\pi}{3}\]


Find the slope of a line passing through the following point:

 (−3, 2) and (1, 4)


Find the slope of a line passing through the following point:

\[(a t_1^2 , 2 a t_1 ) \text { and } (a t_2^2 , 2 a t_2 )\]


Using the method of slope, show that the following points are collinear A (4, 8), B (5, 12), C (9, 28).


What can be said regarding a line if its slope is positive ?


If three points A (h, 0), P (a, b) and B (0, k) lie on a line, show that: \[\frac{a}{h} + \frac{b}{k} = 1\].


Without using the distance formula, show that points (−2, −1), (4, 0), (3, 3) and (−3, 2) are the vertices of a parallelogram.


Find the angle between the X-axis and the line joining the points (3, −1) and (4, −2).


Line through the points (−2, 6) and (4, 8) is perpendicular to the line through the points (8, 12) and (x, 24). Find the value of x. 


A quadrilateral has vertices (4, 1), (1, 7), (−6, 0) and (−1, −9). Show that the mid-points of the sides of this quadrilateral form a parallelogram.


Find the equation of a straight line  with slope − 1/3 and y-intercept − 4.


Show that the perpendicular bisectors of the sides of a triangle are concurrent.


Find the angles between the following pair of straight lines:

3x + y + 12 = 0 and x + 2y − 1 = 0


The acute angle between the medians drawn from the acute angles of a right angled isosceles triangle is 


The angle between the lines 2x − y + 3 = 0 and x + 2y + 3 = 0 is


The medians AD and BE of a triangle with vertices A (0, b), B (0, 0) and C (a, 0) are perpendicular to each other, if


Find k, if the slope of one of the lines given by kx2 + 8xy + y2 = 0 exceeds the slope of the other by 6.


The line passing through (– 2, 0) and (1, 3) makes an angle of ______ with X-axis.


Find the equation to the straight line passing through the point of intersection of the lines 5x – 6y – 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x – 5y + 11 = 0.


The reflection of the point (4, – 13) about the line 5x + y + 6 = 0 is ______.


Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2).


If p is the length of perpendicular from the origin on the line `x/a + y/b` = 1 and a2, p2, b2 are in A.P, then show that a4 + b4 = 0.


Slope of a line which cuts off intercepts of equal lengths on the axes is ______.


The points A(– 2, 1), B(0, 5), C(– 1, 2) are collinear.


The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Then the other two sides are y – 3 = `(2 +- sqrt(3)) (x - 2)`.


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). The co-ordinates of the point A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×