मराठी

The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Then the other two sides are y – 3 = (2±3)(x-2). - Mathematics

Advertisements
Advertisements

प्रश्न

The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Then the other two sides are y – 3 = `(2 +- sqrt(3)) (x - 2)`.

पर्याय

  • True

  • False

MCQ
चूक किंवा बरोबर

उत्तर

This statement is True.

Explanation:

Let ABC be an equilateral triangle with vertex (2, 3) and the opposite side is x + y = 2 with slope –1.

Suppose slope of line AB is m.

Since each angle of equilateral triangle is 60°.

∴ Angle between AB and BC

tan 60° = `|(-1 - m)/(1 + (-1)m)|`

⇒ `sqrt(3) = |(1 + m)/(1 - m)|`

⇒ `sqrt(3) = +- ((1 + m)/(1 - m))`

Taking (+) sign,

`sqrt(3) = (1 + m)/(1 - m)`

⇒ `sqrt(3) - sqrt(3)m = 1 + m`

⇒ `sqrt(3)m + m = sqrt(3) - 1`

⇒ `m(sqrt(3) + 1) = sqrt(3) - 1`

⇒ `m = (sqrt(3) - 1)/(sqrt(3) + 1)

⇒ `m = (sqrt(3) - 1)/(sqrt(3) + 1) xx (sqrt(3) - 1)/(sqrt(3) - 1)`

⇒ `m = (3 + 1 - 2sqrt(3))/(3 - 1)`

= `2 - sqrt(3)`

Taking (–) sign,

`m = 2 + sqrt(3)`

So, the equations of other two lines are y – 3 = `(2 +- sqrt(3))(x - 2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Straight Lines - Exercise [पृष्ठ १८३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 10 Straight Lines
Exercise | Q 52 | पृष्ठ १८३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The base of an equilateral triangle with side 2a lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle.


Find the distance between P (x1, y1) and Q (x2, y2) when :

  1. PQ is parallel to the y-axis,
  2. PQ is parallel to the x-axis

Find the slope of the line, which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.


Consider the given population and year graph. Find the slope of the line AB and using it, find what will be the population in the year 2010?


Find the value of p so that the three lines 3x + y – 2 = 0, px + 2y – 3 = 0 and 2x – y – 3 = 0 may intersect at one point.


State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (9, 5) and (−1, 1); through (3, −5) and (8, −3)


Using the method of slope, show that the following points are collinear A (4, 8), B (5, 12), C (9, 28).


What is the value of y so that the line through (3, y)  and (2, 7) is parallel to the line through (−1, 4) and (0, 6)?


Show that the line joining (2, −5) and (−2, 5) is perpendicular to the line joining (6, 3) and (1, 1).


The slope of a line is double of the slope of another line. If tangents of the angle between them is \[\frac{1}{3}\],find the slopes of the other line.


Find the equation of a straight line with slope 2 and y-intercept 3 .


Find the equation of a line which is perpendicular to the line joining (4, 2) and (3, 5) and cuts off an intercept of length 3 on y-axis.


Find the equation of the perpendicular to the line segment joining (4, 3) and (−1, 1) if it cuts off an intercept −3 from y-axis.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).


Find the angles between the following pair of straight lines:

3x − y + 5 = 0 and x − 3y + 1 = 0


Find the angles between the following pair of straight lines:

x − 4y = 3 and 6x − y = 11


If θ is the angle which the straight line joining the points (x1, y1) and (x2, y2) subtends at the origin, prove that  \[\tan \theta = \frac{x_2 y_1 - x_1 y_2}{x_1 x_2 + y_1 y_2}\text { and } \cos \theta = \frac{x_1 x_2 + y_1 y_2}{\sqrt{{x_1}^2 + {y_1}^2}\sqrt{{x_2}^2 + {y_2}^2}}\].


Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.


Show that the line a2x + ay + 1 = 0 is perpendicular to the line x − ay = 1 for all non-zero real values of a.


Show that the tangent of an angle between the lines \[\frac{x}{a} + \frac{y}{b} = 1 \text { and } \frac{x}{a} - \frac{y}{b} = 1\text {  is } \frac{2ab}{a^2 - b^2}\].


The reflection of the point (4, −13) about the line 5x + y + 6 = 0 is  


The equation of a line passing through the point (7, - 4) and perpendicular to the line passing through the points (2, 3) and (1 , - 2 ) is ______.


Point of the curve y2 = 3(x – 2) at which the normal is parallel to the line 2y + 4x + 5 = 0 is ______.


If the slope of a line passing through the point A(3, 2) is `3/4`, then find points on the line which are 5 units away from the point A.


Find the angle between the lines y = `(2 - sqrt(3)) (x + 5)` and y = `(2 + sqrt(3))(x - 7)`


Show that the tangent of an angle between the lines `x/a + y/b` = 1 and `x/a - y/b` = 1 is `(2ab)/(a^2 - b^2)`


Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x-axis.


If the equation of the base of an equilateral triangle is x + y = 2 and the vertex is (2, – 1), then find the length of the side of the triangle.


The line `x/a + y/b` = 1 moves in such a way that `1/a^2 + 1/b^2 = 1/c^2`, where c is a constant. The locus of the foot of the perpendicular from the origin on the given line is x2 + y2 = c2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×