मराठी

The Slope of a Line is Double of the Slope of Another Line. If Tangents of the Angle Between Them is 1 3 ,Find the Slopes of the Other Line. - Mathematics

Advertisements
Advertisements

प्रश्न

The slope of a line is double of the slope of another line. If tangents of the angle between them is \[\frac{1}{3}\],find the slopes of the other line.

थोडक्यात उत्तर

उत्तर

Let \[m_1 \text { and  } m_2\] be the slopes of the given lines. 

\[\therefore m_2 = 2 m_1\]

Let \[\theta\] be the angle between the given lines.

\[\therefore \tan\theta = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right|\]

\[ \Rightarrow \frac{1}{3} = \left| \frac{2 m_1 - m_1}{1 + 2 {m_1}^2} \right| = \left| \frac{m_1}{1 + 2 {m_1}^2} \right|\]

\[ \Rightarrow \frac{m_1}{1 + 2 {m_1}^2} = \pm \frac{1}{3}\]

Taking the positive sign, we get,

\[3 m_1 = 1 + 2 {m_1}^2 \]

\[ \Rightarrow 2 {m_1}^2 - 3 m_1 + 1 = 0\]

\[ \Rightarrow \left( 2 m_1 - 1 \right)\left( m_1 - 1 \right) = 0\]

\[ \Rightarrow m_1 = \frac{1}{2}, 1\]

Taking the negative sign, we get,

\[- 3 m_1 = 1 + 2 {m_1}^2 \]

\[ \Rightarrow 2 {m_1}^2 + 3 m_1 + 1 = 0\]

\[ \Rightarrow \left( 2 m_1 + 1 \right)\left( m_1 + 1 \right) = 0\]

\[ \Rightarrow m_1 = - \frac{1}{2}, - 1\]

Hence, the slopes of the other line are \[\pm \frac{1}{2}, \pm 1\] .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.1 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.1 | Q 13 | पृष्ठ १३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find a point on the x-axis, which is equidistant from the points (7, 6) and (3, 4).


Find the value of x for which the points (x, –1), (2, 1) and (4, 5) are collinear.


Consider the given population and year graph. Find the slope of the line AB and using it, find what will be the population in the year 2010?


Find the slope of a line passing through the following point:

 (−3, 2) and (1, 4)


State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (5, 6) and (2, 3); through (9, −2) and (6, −5)


State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (9, 5) and (−1, 1); through (3, −5) and (8, −3)


State whether the two lines in each of the following is parallel, perpendicular or neither.

Through (3, 15) and (16, 6); through (−5, 3) and (8, 2).


What is the value of y so that the line through (3, y)  and (2, 7) is parallel to the line through (−1, 4) and (0, 6)?


Show that the line joining (2, −3) and (−5, 1) is parallel to the line joining (7, −1) and (0, 3).


Line through the points (−2, 6) and (4, 8) is perpendicular to the line through the points (8, 12) and (x, 24). Find the value of x. 


Find the equation of the perpendicular to the line segment joining (4, 3) and (−1, 1) if it cuts off an intercept −3 from y-axis.


Find the equations of the straight lines which cut off an intercept 5 from the y-axis and are equally inclined to the axes.


Find the equations of the altitudes of a ∆ ABC whose vertices are A (1, 4), B (−3, 2) and C (−5, −3).


If the image of the point (2, 1) with respect to a line mirror is (5, 2), find the equation of the mirror.


Find the angles between the following pair of straight lines:

3x + y + 12 = 0 and x + 2y − 1 = 0


Find the angles between the following pair of straight lines:

3x − y + 5 = 0 and x − 3y + 1 = 0


Find the angles between the following pair of straight lines:

3x + 4y − 7 = 0 and 4x − 3y + 5 = 0


Find the angles between the following pair of straight lines:

(m2 − mn) y = (mn + n2) x + n3 and (mn + m2) y = (mn − n2) x + m3.


If two opposite vertices of a square are (1, 2) and (5, 8), find the coordinates of its other two vertices and the equations of its sides.


Write the coordinates of the image of the point (3, 8) in the line x + 3y − 7 = 0.


If the slopes of the lines given by the equation ax2 + 2hxy + by2 = 0 are in the ratio 5 : 3, then the ratio h2 : ab = ______.


The equation of a line passing through the point (7, - 4) and perpendicular to the line passing through the points (2, 3) and (1 , - 2 ) is ______.


Point of the curve y2 = 3(x – 2) at which the normal is parallel to the line 2y + 4x + 5 = 0 is ______.


Find the equation of the straight line passing through (1, 2) and perpendicular to the line x + y + 7 = 0.


If the line joining two points A(2, 0) and B(3, 1) is rotated about A in anticlock wise direction through an angle of 15°. Find the equation of the line in new position.


Find the equation to the straight line passing through the point of intersection of the lines 5x – 6y – 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x – 5y + 11 = 0.


If one diagonal of a square is along the line 8x – 15y = 0 and one of its vertex is at (1, 2), then find the equation of sides of the square passing through this vertex.


The two lines ax + by = c and a′x + b′y = c′ are perpendicular if ______.


The intercept cut off by a line from y-axis is twice than that from x-axis, and the line passes through the point (1, 2). The equation of the line is ______.


Find the equation of the line passing through the point (5, 2) and perpendicular to the line joining the points (2, 3) and (3, – 1).


The tangent of angle between the lines whose intercepts on the axes are a, – b and b, – a, respectively, is ______.


The coordinates of the foot of perpendiculars from the point (2, 3) on the line y = 3x + 4 is given by ______.


Equations of diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y = 1 are ______.


If the vertices of a triangle have integral coordinates, then the triangle can not be equilateral.


The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Then the other two sides are y – 3 = `(2 +- sqrt(3)) (x - 2)`.


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). The co-ordinates of the point A is ______.


The three straight lines ax + by = c, bx + cy = a and cx + ay = b are collinear, if ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×