मराठी

Write the Coordinates of the Image of the Point (3, 8) in the Line X + 3y − 7 = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the coordinates of the image of the point (3, 8) in the line x + 3y − 7 = 0.

थोडक्यात उत्तर

उत्तर

Let the given point be A(3,8) and its image in the line x + 3y − 7 = 0 is B(h,k).
The midpoint of AB is \[\left( \frac{3 + h}{2}, \frac{8 + k}{2} \right)\] that lies on the line x + 3y − 7 = 0. 

\[\therefore \frac{3 + h}{2} + 3 \times \frac{8 + k}{2} - 7 = 0\]

\[h + 3k + 13 = 0\]         ... (1)

AB and the line x + 3y − 7 = 0 are perpendicular.

\[\therefore\text {  Slope of AB } \times \text { Slope of the line } = - 1\]

\[ \Rightarrow \frac{k - 8}{h - 3} \times \frac{- 1}{3} = - 1\]

\[\Rightarrow 3h - k - 1 = 0\]       ... (2)
Solving (1) and (2), we get:
(h, k) = (−1, −4)
Hence, the image of the point (3,8) in the line x + 3y − 7 = 0 is (−1,−4).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.20 [पृष्ठ १३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.20 | Q 10 | पृष्ठ १३२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Draw a quadrilateral in the Cartesian plane, whose vertices are (–4, 5), (0, 7), (5, –5) and (–4, –2). Also, find its area.


Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points P (0, –4) and B (8, 0).


The slope of a line is double of the slope of another line. If tangent of the angle between them is `1/3`, find the slopes of the lines.


If three point (h, 0), (a, b) and (0, k) lie on a line, show that `q/h + b/k = 1`


Find the slope of the lines which make the following angle with the positive direction of x-axis:

\[\frac{2\pi}{3}\]


Find the slope of the lines which make the following angle with the positive direction of x-axis: 

\[\frac{3\pi}{4}\]


State whether the two lines in each of the following is parallel, perpendicular or neither.

Through (3, 15) and (16, 6); through (−5, 3) and (8, 2).


What can be said regarding a line if its slope is  zero ?


What can be said regarding a line if its slope is positive ?


Show that the line joining (2, −3) and (−5, 1) is parallel to the line joining (7, −1) and (0, 3).


The slope of a line is double of the slope of another line. If tangents of the angle between them is \[\frac{1}{3}\],find the slopes of the other line.


Without using the distance formula, show that points (−2, −1), (4, 0), (3, 3) and (−3, 2) are the vertices of a parallelogram.


Find the angle between the X-axis and the line joining the points (3, −1) and (4, −2).


A quadrilateral has vertices (4, 1), (1, 7), (−6, 0) and (−1, −9). Show that the mid-points of the sides of this quadrilateral form a parallelogram.


Find the equation of a straight line with slope −2 and intersecting the x-axis at a distance of 3 units to the left of origin.


Find the acute angle between the lines 2x − y + 3 = 0 and x + y + 2 = 0.


Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.


The angle between the lines 2x − y + 3 = 0 and x + 2y + 3 = 0 is


Find k, if the slope of one of the lines given by kx2 + 8xy + y2 = 0 exceeds the slope of the other by 6.


If the slopes of the lines given by the equation ax2 + 2hxy + by2 = 0 are in the ratio 5 : 3, then the ratio h2 : ab = ______.


If the line joining two points A(2, 0) and B(3, 1) is rotated about A in anticlock wise direction through an angle of 15°. Find the equation of the line in new position.


Find the equation of the line passing through the point (5, 2) and perpendicular to the line joining the points (2, 3) and (3, – 1).


Show that the tangent of an angle between the lines `x/a + y/b` = 1 and `x/a - y/b` = 1 is `(2ab)/(a^2 - b^2)`


P1, P2 are points on either of the two lines `- sqrt(3) |x|` = 2 at a distance of 5 units from their point of intersection. Find the coordinates of the foot of perpendiculars drawn from P1, P2 on the bisector of the angle between the given lines.


The coordinates of the foot of perpendiculars from the point (2, 3) on the line y = 3x + 4 is given by ______.


Equations of diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y = 1 are ______.


The point (4, 1) undergoes the following two successive transformations: 
(i) Reflection about the line y = x
(ii) Translation through a distance 2 units along the positive x-axis Then the final coordinates of the point are ______.


The points (3, 4) and (2, – 6) are situated on the ______ of the line 3x – 4y – 8 = 0.


If the vertices of a triangle have integral coordinates, then the triangle can not be equilateral.


The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Then the other two sides are y – 3 = `(2 +- sqrt(3)) (x - 2)`.


The three straight lines ax + by = c, bx + cy = a and cx + ay = b are collinear, if ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×