मराठी

What Can Be Said Regarding a Line If Its Slope is Positive ? - Mathematics

Advertisements
Advertisements

प्रश्न

What can be said regarding a line if its slope is positive ?

थोडक्यात उत्तर

उत्तर

We know that the value of \[\tan\theta\]  is positive for the value of \[\theta\] in the first quadrant. Therefore, the line makes an acute angle with the positive direction of the x-axis.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.1 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.1 | Q 7.2 | पृष्ठ १३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Draw a quadrilateral in the Cartesian plane, whose vertices are (–4, 5), (0, 7), (5, –5) and (–4, –2). Also, find its area.


Find the distance between P (x1, y1) and Q (x2, y2) when :

  1. PQ is parallel to the y-axis,
  2. PQ is parallel to the x-axis

Find a point on the x-axis, which is equidistant from the points (7, 6) and (3, 4).


Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points P (0, –4) and B (8, 0).


Find the angle between the x-axis and the line joining the points (3, –1) and (4, –2).


The slope of a line is double of the slope of another line. If tangent of the angle between them is `1/3`, find the slopes of the lines.


If three point (h, 0), (a, b) and (0, k) lie on a line, show that `q/h + b/k = 1`


Find the slope of a line passing through the following point:

 (−3, 2) and (1, 4)


Find the slope of a line passing through the following point:

\[(a t_1^2 , 2 a t_1 ) \text { and } (a t_2^2 , 2 a t_2 )\]


State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (9, 5) and (−1, 1); through (3, −5) and (8, −3)


Find the slope of a line (i) which bisects the first quadrant angle (ii) which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.


What is the value of y so that the line through (3, y)  and (2, 7) is parallel to the line through (−1, 4) and (0, 6)?


Find the angle between X-axis and the line joining the points (3, −1) and (4, −2).


Find the equation of a straight line with slope 2 and y-intercept 3 .


Find the equation of the perpendicular to the line segment joining (4, 3) and (−1, 1) if it cuts off an intercept −3 from y-axis.


Find the coordinates of the orthocentre of the triangle whose vertices are (−1, 3), (2, −1) and (0, 0).


Find the angles between the following pair of straight lines:

3x + y + 12 = 0 and x + 2y − 1 = 0


Find the acute angle between the lines 2x − y + 3 = 0 and x + y + 2 = 0.


The equation of the line with slope −3/2 and which is concurrent with the lines 4x + 3y − 7 = 0 and 8x + 5y − 1 = 0 is


Find k, if the slope of one of the lines given by kx2 + 8xy + y2 = 0 exceeds the slope of the other by 6.


The equation of a line passing through the point (7, - 4) and perpendicular to the line passing through the points (2, 3) and (1 , - 2 ) is ______.


If x + y = k is normal to y2 = 12x, then k is ______.


Point of the curve y2 = 3(x – 2) at which the normal is parallel to the line 2y + 4x + 5 = 0 is ______.


Find the equation of the straight line passing through (1, 2) and perpendicular to the line x + y + 7 = 0.


If the slope of a line passing through the point A(3, 2) is `3/4`, then find points on the line which are 5 units away from the point A.


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). Find the coordinates of the point A.


If one diagonal of a square is along the line 8x – 15y = 0 and one of its vertex is at (1, 2), then find the equation of sides of the square passing through this vertex.


The intercept cut off by a line from y-axis is twice than that from x-axis, and the line passes through the point (1, 2). The equation of the line is ______.


Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x-axis.


Equation of the line passing through (1, 2) and parallel to the line y = 3x – 1 is ______.


Equations of diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y = 1 are ______.


The point (4, 1) undergoes the following two successive transformations: 
(i) Reflection about the line y = x
(ii) Translation through a distance 2 units along the positive x-axis Then the final coordinates of the point are ______.


Equations of the lines through the point (3, 2) and making an angle of 45° with the line x – 2y = 3 are ______.


If the vertices of a triangle have integral coordinates, then the triangle can not be equilateral.


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). The co-ordinates of the point A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×