मराठी

Find the Slope of a Line (I) Which Bisects the First Quadrant Angle (Ii) Which Makes an Angle of 30° with the Positive Direction of Y-axis Measured Anticlockwise. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the slope of a line (i) which bisects the first quadrant angle (ii) which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.

थोडक्यात उत्तर

उत्तर

(i)  We know that the angle between the coordinate axes is \[\frac{\pi}{2}\] .

The line bisects the first quadrant angle.
Inclination of the line with the positive x-axis = \[\frac{1}{2}\left( \frac{\pi}{2} \right) = \frac{\pi}{4}\]

\[\therefore \text { Slope of the line } = \tan\left( \frac{\pi}{4} \right) = 1\]

(ii) The line makes an angle of \[{30}^\circ\] with the positive direction of the y-axis measured anticlockwise

Since the line makes an angle of \[{30}^\circ\]  with the positive direction of the y-axis measured anticlockwise, it makes an angle of \[{90}^\circ + {30}^\circ = {120}^\circ\] with the positive direction of the x-axis measured anticlockwise.

\[\therefore \text { Slope of the line } = \tan {120}^\circ = - \tan {60}^\circ = - \sqrt{3}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.1 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.1 | Q 4 | पृष्ठ १३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Draw a quadrilateral in the Cartesian plane, whose vertices are (–4, 5), (0, 7), (5, –5) and (–4, –2). Also, find its area.


The base of an equilateral triangle with side 2a lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle.


Find the distance between P (x1, y1) and Q (x2, y2) when :

  1. PQ is parallel to the y-axis,
  2. PQ is parallel to the x-axis

Without using distance formula, show that points (–2, –1), (4, 0), (3, 3) and (–3, 2) are vertices of a parallelogram.


Find the angle between the x-axis and the line joining the points (3, –1) and (4, –2).


If three point (h, 0), (a, b) and (0, k) lie on a line, show that `q/h + b/k = 1`


Consider the given population and year graph. Find the slope of the line AB and using it, find what will be the population in the year 2010?


Find the equation of the lines through the point (3, 2) which make an angle of 45° with the line x –2y = 3.


State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (5, 6) and (2, 3); through (9, −2) and (6, −5)


State whether the two lines in each of the following is parallel, perpendicular or neither.

Through (6, 3) and (1, 1); through (−2, 5) and (2, −5)


What can be said regarding a line if its slope is  zero ?


Prove that the points (−4, −1), (−2, −4), (4, 0) and (2, 3) are the vertices of a rectangle.


Consider the following population and year graph:
Find the slope of the line AB and using it, find what will be the population in the year 2010.


By using the concept of slope, show that the points (−2, −1), (4, 0), (3, 3) and (−3, 2) are the vertices of a parallelogram.


Find the equation of the perpendicular to the line segment joining (4, 3) and (−1, 1) if it cuts off an intercept −3 from y-axis.


Find the equation of the strainght line intersecting y-axis at a distance of 2 units above the origin and making an angle of 30° with the positive direction of the x-axis.


Find the angles between the following pair of straight lines:

3x − y + 5 = 0 and x − 3y + 1 = 0


Find the angles between the following pair of straight lines:

3x + 4y − 7 = 0 and 4x − 3y + 5 = 0


Find the angles between the following pair of straight lines:

(m2 − mn) y = (mn + n2) x + n3 and (mn + m2) y = (mn − n2) x + m3.


Show that the tangent of an angle between the lines \[\frac{x}{a} + \frac{y}{b} = 1 \text { and } \frac{x}{a} - \frac{y}{b} = 1\text {  is } \frac{2ab}{a^2 - b^2}\].


If two opposite vertices of a square are (1, 2) and (5, 8), find the coordinates of its other two vertices and the equations of its sides.


The acute angle between the medians drawn from the acute angles of a right angled isosceles triangle is 


The angle between the lines 2x − y + 3 = 0 and x + 2y + 3 = 0 is


Point of the curve y2 = 3(x – 2) at which the normal is parallel to the line 2y + 4x + 5 = 0 is ______.


Find the equation of the straight line passing through (1, 2) and perpendicular to the line x + y + 7 = 0.


The intercept cut off by a line from y-axis is twice than that from x-axis, and the line passes through the point (1, 2). The equation of the line is ______.


Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2).


If the equation of the base of an equilateral triangle is x + y = 2 and the vertex is (2, – 1), then find the length of the side of the triangle.


One vertex of the equilateral triangle with centroid at the origin and one side as x + y – 2 = 0 is ______.


The points (3, 4) and (2, – 6) are situated on the ______ of the line 3x – 4y – 8 = 0.


The points A(– 2, 1), B(0, 5), C(– 1, 2) are collinear.


The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Then the other two sides are y – 3 = `(2 +- sqrt(3)) (x - 2)`.


The line which passes through the origin and intersect the two lines `(x - 1)/2 = (y + 3)/4 = (z - 5)/3, (x - 4)/2 = (y + 3)/3 = (z - 14)/4`, is ______.


The three straight lines ax + by = c, bx + cy = a and cx + ay = b are collinear, if ______.


If the line joining two points A (2, 0) and B (3, 1) is rotated about A in anticlockwise direction through an angle of 15°, then the equation of the line in new position is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×