Advertisements
Advertisements
प्रश्न
The acute angle between the medians drawn from the acute angles of a right angled isosceles triangle is
पर्याय
\[\cos^{- 1} \left( \frac{2}{3} \right)\]
\[\cos^{- 1} \left( \frac{3}{4} \right)\]
\[\cos^{- 1} \left( \frac{4}{5} \right)\]
\[\cos^{- 1} \left( \frac{5}{6} \right)\]
उत्तर
\[\cos^{- 1} \left( \frac{4}{5} \right)\]
Let the coordinates of the right-angled isosceles triangle be O(0, 0), A(a, 0) and B(0, a).
Here, BD and AE are the medians drawn from the acute angles B and A, respectively.
∴ Slope of BD = m1
=\[\frac{0 - a}{\frac{a}{2} - 0}\]
= -2
Slope of AE = m2
= \[\frac{\frac{a}{2} - 0}{0 - a}\]
\[= - \frac{1}{2}\]
Let \[\theta\] be the angle between BD and AE.
\[\tan \theta = \left| \frac{- 2 + \frac{1}{2}}{1 + 1} \right|\]
\[ = \frac{3}{4}\]
\[ \Rightarrow \cos \theta = \frac{4}{\sqrt{3^2 + 4^2}}\]
\[ \Rightarrow \cos \theta = \frac{4}{5}\]
\[ \Rightarrow \theta = \cos^{- 1} \left( \frac{4}{5} \right)\]
Hence, the acute angle between the medians is \[\cos^{- 1} \left( \frac{4}{5} \right)\].
APPEARS IN
संबंधित प्रश्न
The base of an equilateral triangle with side 2a lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle.
A line passes through (x1, y1) and (h, k). If slope of the line is m, show that k – y1 = m (h – x1).
Find the values of k for which the line (k–3) x – (4 – k2) y + k2 –7k + 6 = 0 is
- Parallel to the x-axis,
- Parallel to the y-axis,
- Passing through the origin.
Find the slope of a line passing through the following point:
(−3, 2) and (1, 4)
State whether the two lines in each of the following are parallel, perpendicular or neither.
Through (5, 6) and (2, 3); through (9, −2) and (6, −5)
State whether the two lines in each of the following is parallel, perpendicular or neither.
Through (6, 3) and (1, 1); through (−2, 5) and (2, −5)
Using the method of slope, show that the following points are collinear A (4, 8), B (5, 12), C (9, 28).
What is the value of y so that the line through (3, y) and (2, 7) is parallel to the line through (−1, 4) and (0, 6)?
Show that the line joining (2, −3) and (−5, 1) is parallel to the line joining (7, −1) and (0, 3).
The slope of a line is double of the slope of another line. If tangents of the angle between them is \[\frac{1}{3}\],find the slopes of the other line.
Consider the following population and year graph:
Find the slope of the line AB and using it, find what will be the population in the year 2010.
Find the angle between the X-axis and the line joining the points (3, −1) and (4, −2).
A quadrilateral has vertices (4, 1), (1, 7), (−6, 0) and (−1, −9). Show that the mid-points of the sides of this quadrilateral form a parallelogram.
Find the equation of the strainght line intersecting y-axis at a distance of 2 units above the origin and making an angle of 30° with the positive direction of the x-axis.
Find the equations of the straight lines which cut off an intercept 5 from the y-axis and are equally inclined to the axes.
Show that the perpendicular bisectors of the sides of a triangle are concurrent.
Show that the line a2x + ay + 1 = 0 is perpendicular to the line x − ay = 1 for all non-zero real values of a.
If two opposite vertices of a square are (1, 2) and (5, 8), find the coordinates of its other two vertices and the equations of its sides.
Write the coordinates of the image of the point (3, 8) in the line x + 3y − 7 = 0.
The equation of the line with slope −3/2 and which is concurrent with the lines 4x + 3y − 7 = 0 and 8x + 5y − 1 = 0 is
The coordinates of the foot of the perpendicular from the point (2, 3) on the line x + y − 11 = 0 are
If x + y = k is normal to y2 = 12x, then k is ______.
Find the equation to the straight line passing through the point of intersection of the lines 5x – 6y – 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x – 5y + 11 = 0.
If one diagonal of a square is along the line 8x – 15y = 0 and one of its vertex is at (1, 2), then find the equation of sides of the square passing through this vertex.
The two lines ax + by = c and a′x + b′y = c′ are perpendicular if ______.
Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x-axis.
Slope of a line which cuts off intercepts of equal lengths on the axes is ______.
The equation of the straight line passing through the point (3, 2) and perpendicular to the line y = x is ______.
The tangent of angle between the lines whose intercepts on the axes are a, – b and b, – a, respectively, is ______.
Equations of diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y = 1 are ______.
The point (4, 1) undergoes the following two successive transformations:
(i) Reflection about the line y = x
(ii) Translation through a distance 2 units along the positive x-axis Then the final coordinates of the point are ______.
The points (3, 4) and (2, – 6) are situated on the ______ of the line 3x – 4y – 8 = 0.
A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). The co-ordinates of the point A is ______.
If the line joining two points A (2, 0) and B (3, 1) is rotated about A in anticlockwise direction through an angle of 15°, then the equation of the line in new position is ______.