मराठी

A Quadrilateral Has Vertices (4, 1), (1, 7), (−6, 0) and (−1, −9). Show that the Mid-points of the Sides of this Quadrilateral Form a Parallelogram. - Mathematics

Advertisements
Advertisements

प्रश्न

A quadrilateral has vertices (4, 1), (1, 7), (−6, 0) and (−1, −9). Show that the mid-points of the sides of this quadrilateral form a parallelogram.

थोडक्यात उत्तर

उत्तर

Let A (4, 1), B (1, 7), C (−6, 0) and D (−1, −9) be the vertices of the given quadrilateral.
Let P, Q, R and S be the mid-points of AB, BC, CD and DA, respectively.
So, the coordinates of P, Q, R and S are \[P \left( \frac{5}{2}, 4 \right), Q \left( \frac{- 5}{2}, \frac{7}{2} \right), R \left( \frac{- 7}{2}, \frac{- 9}{2} \right) \text { and }S \left( \frac{3}{2}, - 4 \right)\].

In order to prove that PQRS is a parallelogram, it is sufficient to show that PQ is parallel to RS andPQ is equal to RS.
Now, we have,
Slope of PQ 

\[= \frac{\frac{7}{2} - 4}{\frac{- 5}{2} - \frac{5}{2}} = \frac{1}{10}\]

Slope of RS \[= \frac{- 4 + \frac{9}{2}}{\frac{3}{2} + \frac{7}{2}} = \frac{1}{10}\]

Clearly, Slope of PQ = Slope of RS 
Therefore, PQ

\[\lVert\] RS  \[PQ = \sqrt{\left( - \frac{5}{2} - \frac{5}{2} \right)^2 + \left( \frac{7}{2} - 4 \right)^2} = \frac{\sqrt{101}}{2}\]

\[RS = \sqrt{\left( \frac{3}{2} + \frac{7}{2} \right)^2 + \left( - 4 + \frac{9}{2} \right)^2} = \frac{\sqrt{101}}{2}\]

Therefore, PQ = RS
Thus, PQ \[\lVert\] RS and PQ = RS

Hence, the mid-points of the sides of the given quadrilateral form a parallelogram.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.1 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.1 | Q 21 | पृष्ठ १४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points P (0, –4) and B (8, 0).


The slope of a line is double of the slope of another line. If tangent of the angle between them is `1/3`, find the slopes of the lines.


Consider the given population and year graph. Find the slope of the line AB and using it, find what will be the population in the year 2010?


Find the slope of a line passing through the following point:

\[(a t_1^2 , 2 a t_1 ) \text { and } (a t_2^2 , 2 a t_2 )\]


State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (9, 5) and (−1, 1); through (3, −5) and (8, −3)


Using the method of slope, show that the following points are collinear A (16, − 18), B (3, −6), C (−10, 6) .


What is the value of y so that the line through (3, y)  and (2, 7) is parallel to the line through (−1, 4) and (0, 6)?


What can be said regarding a line if its slope is  zero ?


What can be said regarding a line if its slope is negative?


Show that the line joining (2, −3) and (−5, 1) is parallel to the line joining (7, −1) and (0, 3).


Find the angle between the X-axis and the line joining the points (3, −1) and (4, −2).


Find the value of x for which the points (x, −1), (2, 1) and (4, 5) are collinear.


Find the equation of a straight line with slope −2 and intersecting the x-axis at a distance of 3 units to the left of origin.


Find the equations of the straight lines which cut off an intercept 5 from the y-axis and are equally inclined to the axes.


Find the coordinates of the orthocentre of the triangle whose vertices are (−1, 3), (2, −1) and (0, 0).


Find the equations of the altitudes of a ∆ ABC whose vertices are A (1, 4), B (−3, 2) and C (−5, −3).


If the image of the point (2, 1) with respect to a line mirror is (5, 2), find the equation of the mirror.


The line through (h, 3) and (4, 1) intersects the line 7x − 9y − 19 = 0 at right angle. Find the value of h.


Find the angles between the following pair of straight lines:

3x + 4y − 7 = 0 and 4x − 3y + 5 = 0


Find the angle between the line joining the points (2, 0), (0, 3) and the line x + y = 1.


Prove that the straight lines (a + b) x + (a − b ) y = 2ab, (a − b) x + (a + b) y = 2ab and x + y = 0 form an isosceles triangle whose vertical angle is 2 tan−1 \[\left( \frac{a}{b} \right)\].


Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.


Write the coordinates of the image of the point (3, 8) in the line x + 3y − 7 = 0.


The medians AD and BE of a triangle with vertices A (0, b), B (0, 0) and C (a, 0) are perpendicular to each other, if


The coordinates of the foot of the perpendicular from the point (2, 3) on the line x + y − 11 = 0 are


If m1 and m2 are slopes of lines represented by 6x2 - 5xy + y2 = 0, then (m1)3 + (m2)3 = ?


The line passing through (– 2, 0) and (1, 3) makes an angle of ______ with X-axis.


Find the equation of the straight line passing through (1, 2) and perpendicular to the line x + y + 7 = 0.


If the line joining two points A(2, 0) and B(3, 1) is rotated about A in anticlock wise direction through an angle of 15°. Find the equation of the line in new position.


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). Find the coordinates of the point A.


The two lines ax + by = c and a′x + b′y = c′ are perpendicular if ______.


The coordinates of the foot of the perpendicular from the point (2, 3) on the line x + y – 11 = 0 are ______.


Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x-axis.


The equation of the straight line passing through the point (3, 2) and perpendicular to the line y = x is ______.


Equations of diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y = 1 are ______.


If the vertices of a triangle have integral coordinates, then the triangle can not be equilateral.


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). The co-ordinates of the point A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×