मराठी

The coordinates of the foot of the perpendicular from the point (2, 3) on the line x + y – 11 = 0 are ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The coordinates of the foot of the perpendicular from the point (2, 3) on the line x + y – 11 = 0 are ______.

पर्याय

  • (–6, 5)

  • (5, 6)

  • (–5, 6)

  • (6, 5)

MCQ
रिकाम्या जागा भरा

उत्तर

The coordinates of the foot of the perpendicular from the point (2, 3) on the line x + y – 11 = 0 are (5, 6).

Explanation:

Let (h, k) be the coordinates of the foot of the perpendicular from the point (2, 3) on the line x + y – 11 = 0.

Then, the slope of the perpendicular line is `(k - 3)/(h - 2)`

Again the slope of the given line x + y – 11 = 0 is – 1 (why?)

Using the condition of perpendicularity of lines, we have

`(k - 3)/(h - 2) (-1)` = – 1  (Why?)

or k – h = 1  ....(1)

Since (h, k) lies on the given line, we have,

h + k – 11 = 0 or h + k = 11   ....(2)

Solving (1) and (2)

We get h = 5 and k = 6.

Thus (5, 6) are the required coordinates of the foot of the perpendicular.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Straight Lines - Solved Examples [पृष्ठ १७५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 10 Straight Lines
Solved Examples | Q 16 | पृष्ठ १७५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The base of an equilateral triangle with side 2a lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle.


Without using the Pythagoras theorem, show that the points (4, 4), (3, 5) and (–1, –1) are the vertices of a right angled triangle.


Find the angle between the x-axis and the line joining the points (3, –1) and (4, –2).


Find the value of p so that the three lines 3x + y – 2 = 0, px + 2y – 3 = 0 and 2x – y – 3 = 0 may intersect at one point.


Find the slope of the lines which make the following angle with the positive direction of x-axis: \[\frac{\pi}{3}\]


State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (5, 6) and (2, 3); through (9, −2) and (6, −5)


Using the method of slope, show that the following points are collinear A (16, − 18), B (3, −6), C (−10, 6) .


Show that the line joining (2, −3) and (−5, 1) is parallel to the line joining (7, −1) and (0, 3).


Find the angle between the X-axis and the line joining the points (3, −1) and (4, −2).


A quadrilateral has vertices (4, 1), (1, 7), (−6, 0) and (−1, −9). Show that the mid-points of the sides of this quadrilateral form a parallelogram.


Find the coordinates of the orthocentre of the triangle whose vertices are (−1, 3), (2, −1) and (0, 0).


Show that the perpendicular bisectors of the sides of a triangle are concurrent.


Find the angle between the line joining the points (2, 0), (0, 3) and the line x + y = 1.


If θ is the angle which the straight line joining the points (x1, y1) and (x2, y2) subtends at the origin, prove that  \[\tan \theta = \frac{x_2 y_1 - x_1 y_2}{x_1 x_2 + y_1 y_2}\text { and } \cos \theta = \frac{x_1 x_2 + y_1 y_2}{\sqrt{{x_1}^2 + {y_1}^2}\sqrt{{x_2}^2 + {y_2}^2}}\].


Show that the tangent of an angle between the lines \[\frac{x}{a} + \frac{y}{b} = 1 \text { and } \frac{x}{a} - \frac{y}{b} = 1\text {  is } \frac{2ab}{a^2 - b^2}\].


Find k, if the slope of one of the lines given by kx2 + 8xy + y2 = 0 exceeds the slope of the other by 6.


Find the equation to the straight line passing through the point of intersection of the lines 5x – 6y – 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x – 5y + 11 = 0.


The intercept cut off by a line from y-axis is twice than that from x-axis, and the line passes through the point (1, 2). The equation of the line is ______.


Find the equation of the line passing through the point (5, 2) and perpendicular to the line joining the points (2, 3) and (3, – 1).


The tangent of angle between the lines whose intercepts on the axes are a, – b and b, – a, respectively, is ______.


The point (4, 1) undergoes the following two successive transformations: 
(i) Reflection about the line y = x
(ii) Translation through a distance 2 units along the positive x-axis Then the final coordinates of the point are ______.


The points (3, 4) and (2, – 6) are situated on the ______ of the line 3x – 4y – 8 = 0.


If the vertices of a triangle have integral coordinates, then the triangle can not be equilateral.


The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Then the other two sides are y – 3 = `(2 +- sqrt(3)) (x - 2)`.


The line `x/a + y/b` = 1 moves in such a way that `1/a^2 + 1/b^2 = 1/c^2`, where c is a constant. The locus of the foot of the perpendicular from the origin on the given line is x2 + y2 = c2.


If the line joining two points A (2, 0) and B (3, 1) is rotated about A in anticlockwise direction through an angle of 15°, then the equation of the line in new position is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×