Advertisements
Advertisements
प्रश्न
Show that the perpendicular bisectors of the sides of a triangle are concurrent.
उत्तर
Let ABC be a triangle with vertices \[A \left( x_1 , y_1 \right), B \left( x_2 , y_2 \right) \text { and } C \left( x_3 , y_3 \right)\]
Let D, E and F be the midpoints of the sides BC, CA and AB, respectively.
Thus, the coordinates of D, E and F are \[D \left( \frac{x_2 + x_3}{2}, \frac{y_2 + y_3}{2} \right), E \left( \frac{x_1 + x_3}{2}, \frac{y_1 + y_3}{2} \right)\] and \[F \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)\].
Let
\[m_D , m_E \text { and } m_F\] be the slopes of AD, BE and CF respectively.
\[\therefore\] Slope of BC \[\times\] \[m_D\] = \[-\]1
\[\Rightarrow \frac{y_3 - y_2}{x_3 - x_2} \times m_D = - 1\]
\[ \Rightarrow m_D = - \frac{x_3 - x_2}{y_3 - y_2}\]
Thus, the equation of AD
\[y - \frac{y_2 + y_3}{2} = - \frac{x_3 - x_2}{y_3 - y_2}\left( x - \frac{x_2 + x_3}{2} \right)\]
\[\Rightarrow y - \frac{y_2 + y_3}{2} = - \frac{x_3 - x_2}{y_3 - y_2}\left( x - \frac{x_2 + x_3}{2} \right)\]
\[ \Rightarrow 2y\left( y_3 - y_2 \right) - \left( {y_3}^2 - {y_2}^2 \right) = - 2x\left( x_3 - x_2 \right) + {x_3}^2 - {x_2}^2\]
\[\Rightarrow 2x\left( x_3 - x_2 \right) + 2y\left( y_3 - y_2 \right) - \left( {x_3}^2 - {x_2}^2 \right) - \left( {y_3}^2 - {y_2}^2 \right) = 0\] .......... (1)
Similarly, the respective equations of BE and CF are \[2x\left( x_1 - x_3 \right) + 2y\left( y_1 - y_3 \right) - \left( {x_1}^2 - {x_3}^2 \right) - \left( {y_1}^2 - {y_3}^2 \right) = 0\] ... (2)
\[2x\left( x_2 - x_1 \right) + 2y\left( y_2 - y_1 \right) - \left( {x_2}^2 - {x_1}^2 \right) - \left( {y_2}^2 - {y_1}^2 \right) = 0\] ... (3)
Let
\[L_1 , L_2 \text { and } L_3\]
represent the lines (1), (2) and (3), respectively.
Adding all the three lines,
We observe:
\[1 \cdot L_1 + 1 \cdot L_2 + 1 \cdot L_3 = 0\]
Hence, the perpendicular bisectors of the sides of a triangle are concurrent.
APPEARS IN
संबंधित प्रश्न
Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points P (0, –4) and B (8, 0).
A line passes through (x1, y1) and (h, k). If slope of the line is m, show that k – y1 = m (h – x1).
Consider the given population and year graph. Find the slope of the line AB and using it, find what will be the population in the year 2010?
Find the slope of the lines which make the following angle with the positive direction of x-axis:
\[\frac{2\pi}{3}\]
Find the slope of the lines which make the following angle with the positive direction of x-axis:
\[\frac{3\pi}{4}\]
Find the slope of the lines which make the following angle with the positive direction of x-axis: \[\frac{\pi}{3}\]
Find the slope of a line passing through the following point:
(−3, 2) and (1, 4)
State whether the two lines in each of the following are parallel, perpendicular or neither.
Through (5, 6) and (2, 3); through (9, −2) and (6, −5)
State whether the two lines in each of the following are parallel, perpendicular or neither.
Through (9, 5) and (−1, 1); through (3, −5) and (8, −3)
The slope of a line is double of the slope of another line. If tangents of the angle between them is \[\frac{1}{3}\],find the slopes of the other line.
Without using the distance formula, show that points (−2, −1), (4, 0), (3, 3) and (−3, 2) are the vertices of a parallelogram.
Line through the points (−2, 6) and (4, 8) is perpendicular to the line through the points (8, 12) and (x, 24). Find the value of x.
Find the equation of a straight line with slope 2 and y-intercept 3 .
Find the equation of the strainght line intersecting y-axis at a distance of 2 units above the origin and making an angle of 30° with the positive direction of the x-axis.
Find the equations of the altitudes of a ∆ ABC whose vertices are A (1, 4), B (−3, 2) and C (−5, −3).
Find the image of the point (3, 8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.
Find the angles between the following pair of straight lines:
x − 4y = 3 and 6x − y = 11
Prove that the straight lines (a + b) x + (a − b ) y = 2ab, (a − b) x + (a + b) y = 2ab and x + y = 0 form an isosceles triangle whose vertical angle is 2 tan−1 \[\left( \frac{a}{b} \right)\].
Write the coordinates of the image of the point (3, 8) in the line x + 3y − 7 = 0.
If x + y = k is normal to y2 = 12x, then k is ______.
The line passing through (– 2, 0) and (1, 3) makes an angle of ______ with X-axis.
Find the equation of the straight line passing through (1, 2) and perpendicular to the line x + y + 7 = 0.
If the line joining two points A(2, 0) and B(3, 1) is rotated about A in anticlock wise direction through an angle of 15°. Find the equation of the line in new position.
Find the equation to the straight line passing through the point of intersection of the lines 5x – 6y – 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x – 5y + 11 = 0.
The coordinates of the foot of the perpendicular from the point (2, 3) on the line x + y – 11 = 0 are ______.
The intercept cut off by a line from y-axis is twice than that from x-axis, and the line passes through the point (1, 2). The equation of the line is ______.
Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x-axis.
If the equation of the base of an equilateral triangle is x + y = 2 and the vertex is (2, – 1), then find the length of the side of the triangle.
P1, P2 are points on either of the two lines `- sqrt(3) |x|` = 2 at a distance of 5 units from their point of intersection. Find the coordinates of the foot of perpendiculars drawn from P1, P2 on the bisector of the angle between the given lines.
The tangent of angle between the lines whose intercepts on the axes are a, – b and b, – a, respectively, is ______.
The points A(– 2, 1), B(0, 5), C(– 1, 2) are collinear.
The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Then the other two sides are y – 3 = `(2 +- sqrt(3)) (x - 2)`.
The equation of the line through the intersection of the lines 2x – 3y = 0 and 4x – 5y = 2 and
Column C1 | Column C2 |
(a) Through the point (2, 1) is | (i) 2x – y = 4 |
(b) Perpendicular to the line (ii) x + y – 5 = 0 x + 2y + 1 = 0 is |
(ii) x + y – 5 = 0 |
(c) Parallel to the line (iii) x – y –1 = 0 3x – 4y + 5 = 0 is |
(iii) x – y –1 = 0 |
(d) Equally inclined to the axes is | (iv) 3x – 4y – 1 = 0 |
The line which passes through the origin and intersect the two lines `(x - 1)/2 = (y + 3)/4 = (z - 5)/3, (x - 4)/2 = (y + 3)/3 = (z - 14)/4`, is ______.
A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). The co-ordinates of the point A is ______.