Advertisements
Advertisements
Question
Show that the perpendicular bisectors of the sides of a triangle are concurrent.
Solution
Let ABC be a triangle with vertices \[A \left( x_1 , y_1 \right), B \left( x_2 , y_2 \right) \text { and } C \left( x_3 , y_3 \right)\]
Let D, E and F be the midpoints of the sides BC, CA and AB, respectively.
Thus, the coordinates of D, E and F are \[D \left( \frac{x_2 + x_3}{2}, \frac{y_2 + y_3}{2} \right), E \left( \frac{x_1 + x_3}{2}, \frac{y_1 + y_3}{2} \right)\] and \[F \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)\].
Let
\[m_D , m_E \text { and } m_F\] be the slopes of AD, BE and CF respectively.
\[\therefore\] Slope of BC \[\times\] \[m_D\] = \[-\]1
\[\Rightarrow \frac{y_3 - y_2}{x_3 - x_2} \times m_D = - 1\]
\[ \Rightarrow m_D = - \frac{x_3 - x_2}{y_3 - y_2}\]
Thus, the equation of AD
\[y - \frac{y_2 + y_3}{2} = - \frac{x_3 - x_2}{y_3 - y_2}\left( x - \frac{x_2 + x_3}{2} \right)\]
\[\Rightarrow y - \frac{y_2 + y_3}{2} = - \frac{x_3 - x_2}{y_3 - y_2}\left( x - \frac{x_2 + x_3}{2} \right)\]
\[ \Rightarrow 2y\left( y_3 - y_2 \right) - \left( {y_3}^2 - {y_2}^2 \right) = - 2x\left( x_3 - x_2 \right) + {x_3}^2 - {x_2}^2\]
\[\Rightarrow 2x\left( x_3 - x_2 \right) + 2y\left( y_3 - y_2 \right) - \left( {x_3}^2 - {x_2}^2 \right) - \left( {y_3}^2 - {y_2}^2 \right) = 0\] .......... (1)
Similarly, the respective equations of BE and CF are \[2x\left( x_1 - x_3 \right) + 2y\left( y_1 - y_3 \right) - \left( {x_1}^2 - {x_3}^2 \right) - \left( {y_1}^2 - {y_3}^2 \right) = 0\] ... (2)
\[2x\left( x_2 - x_1 \right) + 2y\left( y_2 - y_1 \right) - \left( {x_2}^2 - {x_1}^2 \right) - \left( {y_2}^2 - {y_1}^2 \right) = 0\] ... (3)
Let
\[L_1 , L_2 \text { and } L_3\]
represent the lines (1), (2) and (3), respectively.
Adding all the three lines,
We observe:
\[1 \cdot L_1 + 1 \cdot L_2 + 1 \cdot L_3 = 0\]
Hence, the perpendicular bisectors of the sides of a triangle are concurrent.
APPEARS IN
RELATED QUESTIONS
The base of an equilateral triangle with side 2a lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle.
Find a point on the x-axis, which is equidistant from the points (7, 6) and (3, 4).
Find the angle between the x-axis and the line joining the points (3, –1) and (4, –2).
If three point (h, 0), (a, b) and (0, k) lie on a line, show that `q/h + b/k = 1`
Consider the given population and year graph. Find the slope of the line AB and using it, find what will be the population in the year 2010?
Find the equation of a line drawn perpendicular to the line `x/4 + y/6 = 1`through the point, where it meets the y-axis.
Find the equation of the lines through the point (3, 2) which make an angle of 45° with the line x –2y = 3.
Find the slope of the lines which make the following angle with the positive direction of x-axis:
\[\frac{2\pi}{3}\]
What can be said regarding a line if its slope is zero ?
What can be said regarding a line if its slope is positive ?
Without using Pythagoras theorem, show that the points A (0, 4), B (1, 2) and C (3, 3) are the vertices of a right angled triangle.
Prove that the points (−4, −1), (−2, −4), (4, 0) and (2, 3) are the vertices of a rectangle.
Find the angle between the X-axis and the line joining the points (3, −1) and (4, −2).
By using the concept of slope, show that the points (−2, −1), (4, 0), (3, 3) and (−3, 2) are the vertices of a parallelogram.
A quadrilateral has vertices (4, 1), (1, 7), (−6, 0) and (−1, −9). Show that the mid-points of the sides of this quadrilateral form a parallelogram.
Find the equation of a straight line with slope − 1/3 and y-intercept − 4.
Find the equation of a straight line with slope −2 and intersecting the x-axis at a distance of 3 units to the left of origin.
Find the equation of a line which is perpendicular to the line joining (4, 2) and (3, 5) and cuts off an intercept of length 3 on y-axis.
Find the angles between the following pair of straight lines:
3x + y + 12 = 0 and x + 2y − 1 = 0
Find the angles between the following pair of straight lines:
3x + 4y − 7 = 0 and 4x − 3y + 5 = 0
Find the angles between the following pair of straight lines:
(m2 − mn) y = (mn + n2) x + n3 and (mn + m2) y = (mn − n2) x + m3.
Find the angle between the line joining the points (2, 0), (0, 3) and the line x + y = 1.
The acute angle between the medians drawn from the acute angles of a right angled isosceles triangle is
The medians AD and BE of a triangle with vertices A (0, b), B (0, 0) and C (a, 0) are perpendicular to each other, if
The equation of the line with slope −3/2 and which is concurrent with the lines 4x + 3y − 7 = 0 and 8x + 5y − 1 = 0 is
The reflection of the point (4, −13) about the line 5x + y + 6 = 0 is
A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). Find the coordinates of the point A.
The two lines ax + by = c and a′x + b′y = c′ are perpendicular if ______.
The equation of the line passing through (1, 2) and perpendicular to x + y + 7 = 0 is ______.
The reflection of the point (4, – 13) about the line 5x + y + 6 = 0 is ______.
Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x-axis.
The coordinates of the foot of perpendiculars from the point (2, 3) on the line y = 3x + 4 is given by ______.
Equations of the lines through the point (3, 2) and making an angle of 45° with the line x – 2y = 3 are ______.
The points A(– 2, 1), B(0, 5), C(– 1, 2) are collinear.
The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Then the other two sides are y – 3 = `(2 +- sqrt(3)) (x - 2)`.
The line `x/a + y/b` = 1 moves in such a way that `1/a^2 + 1/b^2 = 1/c^2`, where c is a constant. The locus of the foot of the perpendicular from the origin on the given line is x2 + y2 = c2.
Line joining the points (3, – 4) and (– 2, 6) is perpendicular to the line joining the points (–3, 6) and (9, –18).
Column C1 | Column C2 |
(a) The coordinates of the points P and Q on the line x + 5y = 13 which are at a distance of 2 units from the line 12x – 5y + 26 = 0 are |
(i) (3, 1), (–7, 11) |
(b) The coordinates of the point on the line x + y = 4, which are at a unit distance from the line 4x + 3y – 10 = 0 are |
(ii) `(- 1/3, 11/3), (4/3, 7/3)` |
(c) The coordinates of the point on the line joining A (–2, 5) and B (3, 1) such that AP = PQ = QB are |
(iii) `(1, 12/5), (-3, 16/5)` |